Journal Home > Volume 27 , Issue 3

Powerful electronic design automation tools have enabled the rapid development of electronic Integrated Circuits (ICs). Similar to electronic ICs, silicon photonics technology has sufficiently matured, and large-scale photonic circuits can now be implanted into a single chip. Design tools have also evolved from primary devices to complex photonic circuits. In this paper, we review the current state of photonic design automation in terms of device modeling methods and circuit simulation methodologies, and compare the photonics design flow with mature electronic design automation design flows. Key challenges and opportunities are also discussed.


menu
Abstract
Full text
Outline
About this article

A Brief Review of Design and Simulation Methodology in Silicon Photonics

Show Author's information Chonglei SunLiuge DuJia Zhao( )
School of Information Science and Engineering, Shandong University, Qingdao 266237, China

Abstract

Powerful electronic design automation tools have enabled the rapid development of electronic Integrated Circuits (ICs). Similar to electronic ICs, silicon photonics technology has sufficiently matured, and large-scale photonic circuits can now be implanted into a single chip. Design tools have also evolved from primary devices to complex photonic circuits. In this paper, we review the current state of photonic design automation in terms of device modeling methods and circuit simulation methodologies, and compare the photonics design flow with mature electronic design automation design flows. Key challenges and opportunities are also discussed.

Keywords: compact model, photonic design automation, circuit simulation, complex modes

References(57)

[1]
B. W. Yan, X. C. Cheng, F. Yang, and L. Yao, Research on EDA technology and its related issues, in Proc. of 2010 Int. Conf. Computer Design and Applications, Qinhuangdao, China, 2010, pp. V4-26-V4-29.
[2]
T. C. Chen, Z. W. Jiang, T. C. Hsu, H. C. Chen, and Y. W. Chang, A high-quality mixed-size analytical placer considering preplaced blocks and density constraints, in Proc. 2006 IEEE/ACM Int. Conf. Computer Aided Design, San Jose, CA, USA, 2006, pp. 187-192.
DOI
[3]
X. Fei, Y. Zhang, and W. Zheng, XB-SIM*: A simulation framework for modeling and exploration of ReRAM-based CNN acceleration design, Tsinghua Science and Technology, vol. 26, no. 3, pp. 322-334, 2021.
[4]
J. Zhang, H. Wu, W. Chen, S. Wei, and H. Chen, Design and tool flow of a reconfigurable asynchronous neural network accelerator, Tsinghua Science and Technology, vol. 26, no. 5, pp. 565-573, 2021.
[5]
and K. Shama, Design and verification of analog integrated circuits using free or open source EDA tools, in Proc. 4th Int. Conf. Communication and Electronics Systems, Coimbatore, India, 2019, pp. 186-191.
DOI
[6]
R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, S. Corzine, S. Hurtt, A. Dentai, S. Murthy, M. Missey, R. Muthiah, et al., InP photonic integrated circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 5, pp. 1113-1125, 2010.
[7]
S. Stopiński, K. Łwniczuk, K. Welikow, A. Jusza, P. Gdula, P. Szczepariski, X. J. M. Leijtens, M. K. Smii, and R. Piramidawicz, Application specific photonic integrated circuits for telecommunications, in Proc. of 2013 Conf. Lasers & Electro-Optics Europe & Int. Quantum Electronics Conf. CLEO EUROPE/IQEC, Munich, Germany, 2013, p. CI_2_2.
DOI
[8]
M. K. Smit, Past and future of InP-based photonic integration, in Proc. of LEOS 2008 - 21st Annu. Meeting of the IEEE Lasers and Electro-Optics Society, Newport Beach, CA, USA, 2008, pp. 51&52.
DOI
[9]
A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, et al., Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits, Journal of Lightwave Technology, vol. 35, no. 4, pp. 639-649, 2017.
[10]
Q. Wilmart, C. Sciancalepore, D. Fowler, H. El Dirani, K. Hassan, S. Garcia, S. Malhouitre, and S. Olivier, Si-SiN photonic platform for CWDM applications, in Proc. of 2018 IEEE 15th Int. Conf. Group IV Photonics (GFP), Cancun, Mexico, 2018, pp. 1&2.
DOI
[11]
M. H. P. Pfeiffer, C. Herkommer, J. Q. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, Photonic damascene process for low-loss, high-confinement silicon nitride waveguides, IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 4, p. 6101411, 2018.
[12]
A. Rao and S. Fathpour, Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics, IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 6, p. 8200912, 2018.
[13]
A. Rao, S. Fathpour, and K. Srinivasan, Integrated thin-film lithium niobate photonics, in Integrated Photonics Research, Silicon and Nanophotonics, Washington, DC, USA, 2020, p. ITu1A.2.
DOI
[14]
Y. Yao, B. Liu, H. Zhang, H. F. Liu, and J. G. Liu, Design of thin-film lithium niobate structure for integrated filtering and sensing applications, Results in Physics, vol. 17, p. 103082, 2020.
[15]
P. P. Absil, P. Verheyen, P. De Heyn, M. Pantouvaki, G. Lepage, J. De Coster, and J. Van Campenhout, Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s, Optics Express, vol. 23, no. 7, pp. 9369-9378, 2015.
[16]
H. M. Yang, P. F. Zheng, P. P. Liu, G. H. Hu, B. F. Yun, and Y. P. Cui, Design of polarization-insensitive 2×2 multimode interference coupler based on double strip silicon nitride waveguides, Optics Communications, vol. 410, pp. 559-564, 2018.
[17]
C. L. Sun, J. Zhao, Z. J. Wang, L. G. Du, and W. P. Huang, Broadband and high uniformity Y junction optical beam splitter with multimode tapered branch, Optik, vol. 180, pp. 866-872, 2019.
[18]
Q. H. Xu, J. F. Tao, C. L. Sun, J. Zhao, Z. J. Wang, L. G. Du, C. N. Niu, X. Li, and W. P. Huang, An ultra-broadband polarizing beam splitter/coupler using asymmetric-waveguides, Optics Communications, vol. 454, p. 124424, 2020.
[19]
H. Y. Qiu, Y. X. Su, P. Yu, T. Hu, J. Y. Yang, and X. Q. Jiang, Compact polarization splitter based on silicon grating-assisted couplers, Optics Letters, vol. 40, no. 9, pp. 1885-1887, 2015.
[20]
X. Sun, M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure, Optics Letters, vol. 41, no. 1, pp. 163-166, 2016.
[21]
X. Sun, J. S. Aitchison, and M. Mojahedi, Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride/silicon-on-insulator platform, Optics Express, vol. 25, no. 7, pp. 8296-8305, 2017.
[22]
W. K. Liu, C. Y. Chen, C. C. Wei, and Y. J. Chen, Improved technique for the characterization of micro-ring resonator using low coherence measurement, Optics Letters, vol. 40, no. 12, pp. 2909-2912, 2015.
[23]
X. Y. Liu, P. Ying, X. M. Zhong, J. Xu, Y. Han, S. Y. Yu, and X. L. Cai, Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform, Optics Letters, vol. 45, no. 22, pp. 6318-6321, 2020.
[24]
I. Demirtzioglou, C. Lacava, A. Shakoor, A. Khokhar, Y. Jung, D. J. Thomson, and P. Petropoulos, Silicon grating coupler for mode order conversion, in Proc. of 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2019, p. JTh2A.74.
DOI
[25]
W. H. Shen, J. B. Du, J. J. Xiong, L. Ma, and Z. Y. He, Silicon-integrated dual-mode fiber-to-chip edge coupler for 2 × 100 Gbps/lambda MDM optical interconnection, Optics Express, vol. 28, no. 22, pp. 33254-33262, 2020.
[26]
K. P. Nagarjun, P. Raj, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs, Optics Express, vol. 28, no. 9, pp. 13032-13042, 2020.
[27]
N. Boynton, H. Cai, M. Gehl, S. Arterburn, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, T. Friedmann, et al., A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator, Optics Express, vol. 28, no. 2, pp. 1868-1884, 2020.
[28]
H. G. Chen, B. Zhang, L. L. Hu, Y. Luo, Y. Hu, X. Xiao, X. R. Liang, F. Li, and L. F. Gan, Thermo-optic-based phase-shifter power dither for silicon IQ optical modulator bias-control technology, Optics Express, vol. 27, no. 15, pp. 21546-21564, 2019.
[29]
C. Y. Wong, S. Zhang, Y. Y. Fang, L. Liu, T. Wang, Q. Zhang, S. P. Deng, G. N. Liu, and X. G. Xu, Silicon IQ modulator for next-generation metro network, Journal of Lightwave Technology, vol. 34, no. 2, pp. 730-736, 2016.
[30]
J. Fujikata, M. Noguchi, K. Kawashita, R. Katamawari, S. Takahashi, M. Nishimura, H. Ono, D. Shimura, H. Takahashi, H. Yaegashi, et al., High-speed Ge/Si electro-absorption optical modulator in C-band operation wavelengths, Optics Express, vol. 28, no. 22, pp. 33123-33134, 2020.
[31]
K. Kuzmenko, P. Vines, A. Halimi, R. J. Collins, A. Maccarone, A. McCarthy, Z. M. Greener, J. Kirdoda, D. C. S. Dumas, L. F. Llin, et al., 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors, Optics Express, vol. 28, no. 2, pp. 1330-1344, 2020.
[32]
M. U. Khan, Y. F. Xing, Y. H. Ye, and W. Bogaerts, Photonic integrated circuit design in a foundry+fabless ecosystem, IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, p. 8201014, 2019.
[33]
Y. K. Su, Y. Zhang, C. Y. Qiu, X. H. Guo, and L. Sun, Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications, Advanced Materials Technologies, vol. 5, p. 1901153, 2020.
[34]
V. Stojanović, R. J. Ram, M. Popovic, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, et al., Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes, Optics Express, vol. 26, no. 10, pp. 13106-13121, 2018.
[35]
Z. Q. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability, Optics Express, vol. 25, no. 9, pp. 9712-9733, 2017.
[36]
Y. C. Zhou, A. Bhardwaj, J. Mason, W. Leong, S. Luna, S. Wolf, T. Vallaitis, A. James, P. Mena, E. Ghillino, et al., Electronic/photonic design automation (EPDA) for InP-photonic integrated circuit process design kit, in Proc. of Integrated Photonics Research, Silicon and Nanophotonics 2019, Burlingame, CA, USA, 2019, p. IM3A.3.
[37]
W. Bogaerts and L. Chrostowski, Silicon photonics circuit design: methods, tools and challenges, Laser & Photonics Reviews, vol. 12, no. 4, p. 1700237, 2018.
[38]
Z. Y. Zhang, R. Wu, Y. Y. Wang, C. Zhang, E. J. Stanton, C. L. Schow, K. T. Cheng, and J. E. Bowers, Compact modeling for silicon photonic heterogeneously integrated circuits, Journal of Lightwave Technology, vol. 35, no. 14, pp. 2973-2980, 2017.
[39]
D. E. Hagan and A. P. Knights, Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2μm, Journal of Optics, vol. 19, no. 2, p. 025801, 2017.
[40]
J. Chiles and S. Fathpour, Silicon photonics beyond silicon-on-insulator, Journal of Optics, vol. 19, no. 5, p. 053001, 2017.
[41]
Q. H. Xu, J. F. Tao, C. L. Sun, J. Zhao, Z. J. Wang, L. G. Du, and X. Li, Broadband polarization-independent directional coupler using asymmetric-waveguides, IEEE Photonics Journal, vol. 11, no. 6, p. 6603506, 2019.
[42]
Y. H. Zhang, M. A. Al-Mumin, H. Y. Liu, C. Xu, L. Zhang, P. L. LiKamWa, and G. F. Li, An integrated few-mode power splitter based on multimode interference, Journal of Lightwave Technology, vol. 37, no. 13, pp. 3000-3008, 2019.
[43]
M. Hammer, K. R. Hiremath, and R. Stoffer, Analytical approaches to the description of optical microresonator devices, AIP Conference Proceedings, vol. 709, p. 48, 2004.
[44]
J. Čyroký, L. Prkna, and M. Hubálek, Guided-wave optical microresonators: Calculation of eigenmodes, AIP Conference Proceedings, vol. 709, no. 1, p. 72, 2004.
[45]
M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. Ortega-Moñux, G. Wangüemert-Pérez, W. N. Ye, D. X. Xu, et al., Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides, Optics Express, vol. 24, no. 5, pp. 5026-5038, 2016.
[46]
H. B. Liang, J. W. Mu, R. A. Soref, X. Li, and W. P. Huang, An optical mode-matching method with improved accuracy and efficiency, IEEE Journal of Quantum Electronics, vol. 51, no. 2, p. 6100108, 2015.
[47]
X. Y. Lu, Z. Z. Cao, M. C. van Beurden, Y. Q. Jiao, Q. B. Wu, and T. Koonen, A mode-matching method for three-dimensional waveguides with PMLs combined with energy conservation, Journal of Lightwave Technology, vol. 36, no. 23, pp. 5573-5579, 2018.
[48]
H. B. Liang, J. W. Mu, X. Li, and W. P. Huang, Insights into complex Berenger modes: A view from the weighted optical path distance perspective, Optics Letters, vol. 39, no. 9, pp. 2811-2814, 2014.
[49]
C. L. Sun, J. Zhao, and W. P. Huang, New insight into complex mode matching method for modeling and simulation of surface-emitting grating couplers, Journal of Lightwave Technology, vol. 37, no. 3, pp. 839-844, 2019.
[50]
R. Haldar, A. D. Banik, M. S. Sanathanan, and S. K. Varshney, Compact athermal electro-optic modulator design based on SOI off-axis microring resonator, in Proc. of 2014 Conf. Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, CA, USA, 2014, pp. 1&2.
DOI
[51]
S. Q. Liu, K. Wu, L. J. Zhou, G. Q. Zhou, L. J. Lu, and J. P. Chen, Modeling a dual-parallel silicon modulator for Sinc-shaped Nyquist pulse generation, IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 3, p. 3400208, 2021.
[52]
K. H. Zhu, V. Saxena, and W. Kuang, Compact Verilog-A modeling of silicon traveling-wave modulator for hybrid CMOS photonic circuit design, in Proc. of 2014 IEEE 57th Int. Midwest Symp. Circuits and Systems (MWSCAS), College Station, TX, USA, 2014, pp. 615-618.
DOI
[53]
Z. H. Huang, C. Li, D. Liang, K. Z. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, 25 Gbps low-voltage waveguide Si-Ge avalanche photodiode, Optica, vol. 3, no. 8, pp. 793-798, 2016.
[54]
B. H. Wang, Z. H. Huang, X. G. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain, Journal of Lightwave Technology, vol. 37, no. 13, pp. 3229-3235, 2019.
[55]
W. P. Huang, L. Han, and J. W. Mu, A rigorous circuit model for simulation of large-scale photonic integrated circuits, IEEE Photonics Journal, vol. 4, no. 5, pp. 1622-1638, 2012.
[56]
L. Bechou, Y. Deshayes, Y. Ousten, O. Gilard, G. Quadri, and L. S. How, Monte-Carlo computations for predicted degradation of photonic devices in space environment, in Proc. of 2015 IEEE Aerospace Conf., Big Sky, MT, USA, 2015, pp. 1-16.
DOI
[57]
M. Yang and C. L. Gong, Automatic classification algorithm of urban building based on corner analysis, in Proc. of 2010 Int. Conf. Image Analysis and Signal Processing, Zhejiang, China, 2010, pp. 579-582.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 February 2021
Revised: 09 May 2021
Accepted: 16 May 2021
Published: 13 November 2021
Issue date: June 2022

Copyright

© The author(s) 2022

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0209000), the Opening Project of the Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, and the National Natural Science Foundation of China (No. 61801267).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return