Journal Home > Volume 27 , Issue 4

Perovskite Solar Cells (PSCs) have attracted considerable attention because of their unique features and high efficiency. However, the stability of perovskite solar cells remains to be improved. In this study, we modified the TiO 2 Electron Transport Layer (ETL) interface with PbCl 2. The efficiency of the perovskite solar cells with carbon electrodes increased from 11.28% to 13.34%, and their stability obviously improved. The addition of PbCl 2 had no effect on the morphology, crystal structure, and absorption property of the perovskite absorber layer. However, it affected the band energy level alignment of the solar cells and accelerated the electron extraction and transfer at the interface between the perovskite layer and the ETL, thus enhancing the overall photovoltaic performance. The interfacial modification of ETL with PbCl 2 is a promising way for the potential commercialization of low-cost carbon electrode-based perovskite solar cells.


menu
Abstract
Full text
Outline
About this article

Interface Modification of TiO 𝟐 Electron Transport Layer with PbCl 𝟐 for Perovskiote Solar Cells with Carbon Electrode

Show Author's information Abolfazl AmraeiniaYuhua Zuo( )Jun ZhengZhi LiuGuangze ZhangLiping LuoBuwen ChengXiaoping ZouChunbo Li
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Sensor, MOE Key Laboratory for Modern Measurement and Control Technology, Beijing Information Science and Technology University, Beijing 100101, China
School of Science, Minzu University of China, Beijing 100081, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Perovskite Solar Cells (PSCs) have attracted considerable attention because of their unique features and high efficiency. However, the stability of perovskite solar cells remains to be improved. In this study, we modified the TiO 2 Electron Transport Layer (ETL) interface with PbCl 2. The efficiency of the perovskite solar cells with carbon electrodes increased from 11.28% to 13.34%, and their stability obviously improved. The addition of PbCl 2 had no effect on the morphology, crystal structure, and absorption property of the perovskite absorber layer. However, it affected the band energy level alignment of the solar cells and accelerated the electron extraction and transfer at the interface between the perovskite layer and the ETL, thus enhancing the overall photovoltaic performance. The interfacial modification of ETL with PbCl 2 is a promising way for the potential commercialization of low-cost carbon electrode-based perovskite solar cells.

Keywords: stability, Perovskite Solar Cell (PSC), Electron Transport Layer (ETL), electron and hole recombination, modification

References(38)

[1]
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050-6051, 2009.
[2]
NREL national renewable energy laboratory chart, https://www.nrel.gov/pv/cell-efficiency.html, 2021.
[3]
J. Ma, X. Guo, L. Zhou, Z. H. Lin, C. F. Zhang, Z. Yang, G. Lu, J. J. Chang, and Y. Hao, Enhanced planar perovskite solar cell performance via contact passivation of TiO2/perovskite interface with NaCl doping approach, ACS Appl. Energy Mater., vol. 1, no. 8, pp. 3826-3834, 2018.
[4]
J. J. Chang, H. Zhu, B. C. Li, F. H. Isikgor, Y. Hao, Q. H. Xu, and J. Y. Ouyang, Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials, J. Mater. Chem. A, vol. 4, no. 3, pp. 887-893, 2016.
[5]
L. Zhou, J. J. Chang, Z. Y. Liu, X. Sun, Z. H. Lin, D. Z. Chen, C. F. Zhang, J. C. Zhang, and Y. Hao, Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step, Nanoscale, vol. 10, no. 6, pp. 3053-3059, 2018.
[6]
Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, Electron-hole diffusion lengths >175μm in solution-grown CH3NH3PbI3 single crystals, Science, vol. 347, no. 6225, pp. 967-970, 2015.
[7]
D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, vol. 347, no. 6221, pp. 519-522, 2015.
[8]
G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, vol. 342, no. 6156, pp. 344-347, 2013.
[9]
T. Zhang, J. Wu, P. Zhang, W. Ahmad, Y. F. Wang, M. Alqahtani, H. Chen, C. M. Gao, Z. D. Chen, Z. M. Wang, et al., High speed and stable solution-processed triple cation perovskite photodetectors, Adv. Opt. Mater., vol. 6, no. 13, p. 1701341, 2018.
[10]
H. R. Tan, A. Jain, O. Voznyy, X. Z. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. J. Yuan, B. Zhang, Y. C. Zhao, et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Science, vol. 355, no. 6326, pp. 722-726, 2017.
[11]
E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh, and J. Seo, Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene), Nature, vol. 567, no. 7749, pp. 511-515, 2019.
[12]
Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, and J. B. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photon., vol. 13, no. 7, pp. 460-466, 2019.
[13]
H. P. Dong, X. D. Guo, W. Z. Li, and L. D. Wang, Cesium carbonate as a surface modification material for organic-inorganic hybrid perovskite solar cells with enhanced performance, RSC Adv., vol. 4, no. 104, pp. 60131-60134, 2014.
[14]
P. Qin, A. L. Domanski, A. K. Chandiran, R. Berger, H. J. Butt, M. I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, et al., Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells, Nanoscale, vol. 6, no. 3, pp. 1508-1514, 2014.
[15]
J. Wang, M. C. Qin, H. Tao, W. J. Ke, Z. Chen, J. W. Wan, P. L. Qin, L. B. Xiong, H. W. Lei, H. Q. Yue, et al., Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer, Appl. Phys. Lett., vol. 106, no. 12, p. 121104, 2015.
[16]
Y. H. Lv, B. Cai, Q. S. Ma, Z. H. Wang, J. Y. Liu, and W. H. Zhang, Highly crystalline Nb-doped TiO2 nanospindles as superior electron transporting materials for high-performance planar structured perovskite solar cells, RSC Adv., vol. 8, no. 37, pp. 20982-20989, 2018.
[17]
Z. Z. Xu, X. Yin, Y. J. Guo, Y. Pu, and M. He, Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance, J. Mater. Chem. C, vol. 6, no. 17, pp. 4746-4752, 2018.
[18]
X. Y. Liu, Z. Y. Liu, B. Sun, X. H. Tan, H. B. Ye, Y. X. Tu, T. L. Shi, Z. R. Tang, and G. L. Liao, 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer, Nano Energy, vol. 50, pp. 201-211, 2018.
[19]
B. X. Zhang, Z. L. Song, J. J. Jin, W. B. Bi, H. Li, C. Chen, Q. L. Dai, L. Xu, and H. W. Song, Efficient rare earth co-doped TiO2 electron transport layer for high-performance perovskite solar cells, J. Colloid Interface Sci., vol. 553, pp. 14-21, 2019.
[20]
D. Chen, T. Liu, Y. Zuo, C. Li, J. Zheng, Z. Liu, B. Liu, and B. Cheng, Brightness and lifetime improved light-emitting diodes from Sr-doped quasi-two-dimensional perovskite layers, Tsinghua Science and Technology, .
[21]
B. Roose, K. C. Gödel, S. Pathak, A. Sadhanala, J. P. C. Baena, B. D. Wilts, H. J. Snaith, U. Wiesner, M. Grätzel, U. Steiner, et al., Enhanced efficiency and stability of perovskite solar cells through Nd-doping of mesostructured TiO2, Adv. Energy Mater., vol. 6, no. 2, p. 1501868, 2016.
[22]
Y. H. Liao, Y. H. Chang, T. H. Lin, S. H. Chan, K. M. Lee, K. H. Hsu, J. F. Hsu, and M. C. Wu, Boosting the power conversion efficiency of perovskite solar cells based on Sn doped TiO2 electron extraction layer via modification the TiO2 phase junction, Solar Energy, vol. 205, pp. 390-398, 2020.
[23]
H. Nagaoka, F. Ma, D. W. deQuilettes, S. M. Vorpahl, M. S. Glaz, A. E. Colbert, M. E. Ziffer, and D. S. Ginger, Zr Incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes, J. Phys. Chem. Lett., vol. 6, no. 4, pp. 669-675, 2015.
[24]
H. Guo, H. Y. Zhang, J. Yang, H. Y. Chen, Y. L. Li, L. P. Wang, and X. B. Niu, TiO2/SnO2 nanocomposites as electron transporting layer for efficiency enhancement in planar CH3NH3PbI3-based perovskite solar cells, ACS Appl. Energy Mater., vol. 1, no. 12, pp. 6936-6944, 2018.
[25]
X. Xu, H. Y. Zhang, J. J. Shi, J. Dong, Y. H. Luo, D. M. Li, and Q. B. Meng, Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer, J. Mater. Chem. A, vol. 3, no. 38, pp. 19288-19293, 2015.
[26]
J. Y. Seo, R. Uchida, H. S. Kim, Y. Saygili, J. S. Luo, C. Moore, J. Kerrod, A. Wagstaff, M. Eklund, R. Mclntyre, et al., Boosting the efficiency of perovskite solar cells with CsBr-modified mesoporous TiO2 beads as electron-selective contact, Adv. Funct. Mater., vol. 28, no. 15, p. 1705763, 2018.
[27]
G. S. Han, H. S. Chung, B. J. Kim, D. H. Kim, J. W. Lee, B. S. Swain, K. Mahmood, J. S. Yoo, N. G. Park, J. H. Lee, et al., Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films, J. Mater. Chem. A, vol. 3, no. 17, pp. 9160-9164, 2015.
[28]
S. Y. Abate, D.-C. Huang, and Y.-T. Tao. Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group, Organic Electronics, vol. 78, p. 105583, 2020.
[29]
S. Sidhik, S. S. Panikar, C. R. Pérez, T. L. Luke, R. Carriles, S. C. Carerra, and E. De La Rosa, Interfacial engineering of TiO2 by graphene nanoplatelets for high-efficiency hysteresis-free perovskite solar cells, ACS Sustainable Chem. Eng., vol. 6, no. 11, pp. 15391-15401, 2018.
[30]
J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells, Nano Lett., vol. 14, no. 2, pp. 724-730, 2014.
[31]
X. Guo, B. J. Zhang, Z. H. Lin, J. Ma, J. Su, W. D. Zhu, C. F. Zhang, J. C. Zhang, J. J. Chang, and Y. Hao, Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells, Org. Electron., vol. 62, pp. 459-467, 2018.
[32]
Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. L. Ma Tingli, and H. Shuzi, All-solid perovskite solar cells with HOCO-R-NH3+I- anchor-group inserted between porous titania and perovskite, J. Phys. Chem. C, vol. 118, no. 30, pp. 16651-16659, 2014.
[33]
Y. L. Yang, Z. H. Liu, W. K. Ng, L. H. Zhang, H. Zhang, X. Y. Meng, Y. Bai, S. Xiao, T. Zhang, C. Hu, et al., An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells, Adv. Funct. Mater., vol. 29, no. 1, p. 1806506, 2018.
[34]
E. Mosconi, E. Ronca, and F. De Angelis, First-principles investigation of the TiO2/Organohalide perovskites interface: The role of interfacial chlorine, J. Phys. Chem. Lett., vol. 5, no. 15, pp. 2619-2625, 2014.
[35]
Q. Wang, M. Q. Lyu, M. Zhang, J. H. Yun, H. J. Chen, and L. Z. Wang, Transition from the tetragonal to cubic phase of organohalide perovskite: The role of chlorine in crystal formation of CH3NH3PbI3 on TiO2 Substrates, J. Phys. Chem. Lett., vol. 6, no. 21, pp. 4379-4384, 2015.
[36]
B. Y. Liu, X. P. Zou, D. Chen, T. R. Liu, Y. H. Zuo, J. Zheng, Z. Liu, and B. W. Cheng, Effect of chloride ion concentrations on luminescence peak blue shift of light-emitting diode using anti-solvent extraction of quasi-two-dimensional perovskite, Tsinghua Science and Technology, vol. 26, no. 4, pp. 496-504, 2021.
[37]
Q. Chen, H. P. Zhou, Y. H. Fang, A. Z. Stieg, T. B. Song, H. H. Wang, X. B. Xu, Y. S. Liu, S. R. Lu, J. B. You, et al., The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells, Nat. Commun., vol. 6, no. 1, p. 7269, 2015.
[38]
Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells, Nano Lett., vol. 14, no. 7, pp. 4158-4163, 2014.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 February 2021
Accepted: 12 March 2021
Published: 09 December 2021
Issue date: August 2022

Copyright

© The author(s) 2022

Acknowledgements

This work was in part supported by the National Natural Science Foundation of China (Nos. 61875186, 61975196, and 61674140), and Chinese Academy of Sciences (CAS) and The World Academy of Sciences (TWAS) (CAS-TWAS) scholarship.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return