[1]
Y. Wang, G. Yan, H. Zhu, S. Buch, and Z. Zhong. VC-Net: Deep volume-composition networks for segmentation and visualization of highly sparse and noisy image data, IEEE Transactions on Visualization and Computer Graphics, vol. 99, p. 1, 2020.
[2]
S. J. Niu, Q. Chen, D. S. Luis, and L. R. Daniel, Robust noise region-based active contour model via local similarity factor for image segmentation, Pattern Recognition: The Journal of the Pattern Recognition Society, vol. 61, pp. 104–119, 2017.
[3]
N. Tag, F. Zhou, Z. Gu, H. Zheng, Z. Yu, and B. Zheng, Unsupervised pixel-wise classification for chaetoceros image segmentation, Neurocomputing, vol. 318, no. 27, pp. 261–270, 2018.
[4]
L. Deng, M. Yang, Z. Liang, Y. He, and C. Wang, Fusing geometrical and visual information via superpoints for the semantic segmentation of 3D road scenes, Tsinghua Science and Technology, vol. 25, no. 4, pp. 498–507, 2020.
[5]
L. Guo, L. Chen, C. L. P. Chen, and J. Zhou, Integrating guided filter into fuzzy clustering for noisy image segmentation, Digital Signal Processing, vol. 83, pp. 235–248, 2018.
[6]
G. Li, H. F. Li, and L. Zhang, Novel model using kernel function and local intensity information for noise image segmentation, Tsinghua Science and Technology, vol. 23, no. 3, pp. 303–314, 2018.
[7]
J. Liu, M. Li, J. X. Wang, F. X. Wu, T. M. Liu, and P. Yi, A survey of MRI-based brain tumor segmentation methods, Tsinghua Science and Technology, vol. 19, no. 6, pp. 578–595, 2014.
[8]
X. F. Wang, H. Min, L. Zou, and Y. G. Zhang, A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement, Pattern Recognition, vol. 48, no. 1, pp. 189–204, 2015.
[9]
L. Zhang, X. G. Peng, G. Li, and H. F. Li, A novel active contour model for image segmentation using local and global region-based information, Machine Vision and Applications, vol. 28. no. 1, pp. 75–89, 2017.
[10]
T. Ivanovska, R. Laqua, L. Wang, A. Schenk, and J. H. Yoon, An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images, Computerized Medical Imaging and Graphics, vol. 48, pp. 9–20, 2016.
[11]
C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2007–2016, 2011.
[12]
J. Xu, Y. Huang, L. Liu, F. Zhu, and L. Shao, Noisy-as-clean: Learning unsupervised denoisingfrom the corrupted image, arXiv preprint arXiv: 1906. 06878, 2020.
[13]
L. Wang and C. Pan, Robust level set image segmentation via a local correntropy-based K-means clustering, Pattern Recognition, vol. 47, no. 5, pp.1917–1925, 2013.
[14]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol. 323, no. 6088, pp. 533–536, 1986.
[15]
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, no. 11, pp. 3371–3408, 2010.
[16]
Y. Lecun, L. Bottou, and Y. Bengio, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,1998.
[17]
X. Xie, C. Wang, A. Zhang, and X. Meng, A robust level set method based on local statistical information for noisy image segmentation, Optik-International Journal for Light and Electron Optics, vol.125, no. 9, pp. 2199–2204, 2014.
[18]
X. Chen, Y. Wang, and X. Wu, Local image intensity fitting model combining global image information, Computer Application, vol. 38, no.12, pp. 3574–3579, 2018.
[19]
C. Li, C. Y. Kao, J. C. Gore, and Z. Ding, Implicit active contours driven by local binary fitting energy, presented at IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007.