AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Convergence of Broadband and Broadcast/Multicast in Maritime Information Networks

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Institute for Ocean Engineering, Tsinghua University, Beijing 100084, China
Peng Cheng Laboratory, Shenzhen 518055, China
Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
Key Laboratory of Digital TV System of Guangdong Province and Shenzhen City, Research Institute of Tsinghua University, Shenzhen 518057, China
Show Author Information

Abstract

Recently, the fifth-generation (5G) of wireless networks mainly focuses on the terrestrial applications. However, the well-developed emerging technologies in 5G are hardly applied to the maritime communications, resulting from the lack of communication infrastructure deployed on the vast ocean, as well as different characteristics of wireless propagation environment over the sea and maritime user distribution. To satisfy the expected plethora of broadband communications and multimedia applications on the ocean, a brand-new maritime information network with a comprehensive coverage capacity in terms of all-hour, all-weather, and all-sea-area has been expected as a revolutionary paradigm to extend the terrestrial capacity of enhanced broadband, massive access, ultra-reliable, and low-latency to the vast ocean. Further considering the limited available resource of maritime communication infrastructure, the convergence of broadband and broadcast/multicast can be regarded as a possible yet practical solution for realizing an efficient and flexible resource configuration with high quality of services. Moreover, according to such multi-functionality and all-coverage maritime information network, the monitoring and sensing of vast ocean area relying on massive Ocean of Things and advanced radar techniques can be also supported. Concerning these issues above, this study proposes a Software Defined Networking (SDN) based Maritime Giant Cellular Network (MagicNet) architecture for broadband and multimedia services. Based on this network, the convergence techniques of broadband and broadcast/multicast, and their supporting for maritime monitoring and marine sensing are also introduced and surveyed.

References

[1]
Z. Q. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. G. Ding, X. F. Lei, G. K. Karagiannidis, and P. Z. Fan, 6G wireless networks: Vision, requirements, architecture, and key technologies, IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, 2019.
[2]
J. Du, C. X. Jiang, J. Wang, Y. Ren, and M. Debbah, Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency, IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 123–134, 2020.
[3]
F. B. Teixeira, T. Oliveira, M. Lopes, C. Leocádio, P. Salazar, J. Ruela, R. Campos, and M. Ricardo, Enabling broadband internet access offshore using tethered balloons: The BLUECOM+ experience, presented at OCEANS 2017-Aberdeen, Aberdeen, UK, 2017, pp. 1–7.
[4]
T. T. Liu, J. Li, F. Shu, M. X. Tao, W. Chen, and Z. Han, Design of contract-based trading mechanism for a small-cell caching system, IEEE Trans. Wirel. Commun., vol. 16, no. 10, pp. 6602–6617, 2017.
[5]
J. Du, C. X. Jiang, E. Gelenbe, H. J. Zhang, Y. Ren, and T. Q. S. Quek, Double auction mechanism design for video caching in heterogeneous ultra-dense networks, IEEE Trans. Wirel. Commun., vol. 18, no. 3, pp. 1669–1683, 2019.
[6]
M. Abdollahvand, K. Forooraghi, J. A. Encinar, Z. Atlasbaf, and E. Martinez-de-Rioja, A 20/30 GHz reflectarray backed by FSS for shared aperture Ku/Ka-band satellite communication antennas, IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 4, pp. 566–570, 2020.
[7]
R. Y. Duan, J. J. Wang, J. Du, Y. L. Wang, Y. Shen, and Y. Ren, New marine information network for realizing all-coverage over sea, (in Chinese), J. Commun., , 2019.
[8]
K. Rapetswa and L. Cheng, Convergence of mobile broadband and broadcast services: A cognitive radio sensing and sharing perspective, Intelligent and Converged Networks, vol. 1, no. 1, pp. 99–114, 2020.
[9]
Z. S. Niu, L. Long, J. Song, and C. Y. Pan, A new paradigm for mobile multimedia broadcasting based on integrated communication and broadcast networks, IEEE Commun. Mag., vol. 46, no. 7, pp. 126–132, 2008.
[10]
J. Song, J. Liu, Y. Zhang, S. Zhou, and C. Y. Pan, Energy efficient broadcast radius optimization in cellular networks, in Proc. 2014 IEEE 11th Consumer Communications and Networking Conf. (CCNC), Las Vegas, NV, USA, 2014, p. 14485212.
[11]
M. A. Bouras, F. Farha, and H. S. Ning, Convergence of computing, communication, and caching in internet of things, Intelligent and Converged Networks, vol. 1, no. 1, pp. 18–36, 2020.
[12]
Z. G. Shu and T. Taleb, A novel QoS framework for network slicing in 5G and beyond networks based on SDN and NFV, IEEE Netw., vol. 34, no. 3, pp. 256–263, 2020.
[13]
J. Du, E. Gelenbe, C. X. Jiang, H. J. Zhang, and Y. Ren, Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks, IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2457–2467, 2017.
[14]
D. Zhou, S. Gao, R. Q. Liu, F. F. Gao, and M. Guizani, Overview of development and regulatory aspects of high altitude platform system, Intelligent and Converged Networks, vol. 1, no. 1, pp. 58–78, 2020.
[15]
C. Rauch, W. Kellerer, and P. Sties, Hybrid mobile interactive services combining DVB-T and GPRS, in Proc. EPMCC 2001, 4th European Personal Mobile Communications Conf., Vienna, Austria, 2001.
[16]
G. Gardikis, A. Kourtis, and P. Constantinou, Modelling TCP performance in mobile DVB-T receivers, WSEAS Trans. Commun., vol. 3, no. 2, pp. 632–635, 2004.
[17]
D. Kouis, D. Loukatos, K. Kontovasilis, G. Kormentzas, and C. Skianis, On the effectiveness of DVB-T for the support of IP-based services in heterogeneous wireless networks, Comput. Netw., vol. 48, no. 1, pp. 57–73, 2005.
[18]
G. Gardikis, G. Kormentzas, G. Xilouris, H. Koumaras, and A. Kourtis, Broadband data access over hybrid DVB-T networks, in Proc. Conf. Heterogeneous Networks (HETNETs), Ilkley, UK, 2005.
[19]
J. Cosmas, T. Itagaki, L. Cruickshank, L. Zheng, K. Krishnapillai, A. Lucas, and L. Elgohari, System concept of a novel converging DVB-T and UMTS mobile system, in Proc. London Communications Symp., London, UK, 2002.
[20]
C. Hamacher, Required guard bands for co-operation of DVB-T and UMTS, in Proc. 13th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, Pavilhao Altantico, Portugal, 2002, pp. 1550–1554.
[21]
B. Heidkamp, A. Pohl, U. Schiek, F. Klinkenberg, J. Hynynen, A. Sieber, P. Christ, T. Owens, J. Cosmas, T. Itagaki, et al., Demonstrating the feasibility of standardised application programme interfaces that will allow mobile/portable terminals to receive services combining UMTS and DVB-T, Int. J. Services Standards, vol. 1, no. 2, pp. 228–242, 2004.
[22]
C. Y. Ho, W. S. Chan, Y. Y. Lin, and T. H. Lin, A quadrature bandpass continuous-time delta-sigma modulator for a tri-mode GSM-EDGE/UMTS/DVB-T receiver, IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2571–2582, 2011.
[23]
L. Polak, O. Kaller, L. Klozar, M. Slanina, J. Sebesta, and T. Kratochvil, Coexistence between DVB-T/T2 and LTE standards in common frequency bands, Wirel. Pers. Commun., vol. 88, no. 3, pp. 669–684, 2016.
[24]
M. Denkovska, P. Latkoski, and L. Gavrilovska, Optimization of spectrum usage and coexistence analysis of DVB-T and LTE-800 systems, Wirel. Pers. Commun., vol. 87, no. 3, pp. 713–730, 2016.
[25]
L. Polak, D. Kresta, J. Milos, T. Kratochvil, and R. Marsalek, Coexistence of DVB-T2 and LTE in the 800 MHz band: analysis of DVB-T2 system configurations, in Proc. 2018 IEEE Int. Symp. Broadband Multimedia Systems and Broadcasting (BMSB), Valencia, Spain, 2018, pp. 1–5.
[26]
G. Ancans, E. Stankevicius, V. Bobrovs, and G. Ivanovs, Estimation of electromagnetic compatibility between DVB-T/DVB-T2 and 4G/5G in the 700 MHz band for co-channel case, Latvian J. Physics Tech. Sci., vol. 57, no. 5, pp. 30–38, 2020.
[27]
J. Yao, W. F. Huang, and M. S. Chen, IP datacasting and channel error handling with DVB-H, in Proc. Conf. Emerging Information Technology 2005, Taipei, China, 2005.
[28]
P. Leroux, V. Verstraete, F. De Turck, and P. Demeester, Synchronized interactive services for mobile devices over IPDC/DVB-H and UMTS, in Proc. 2007 2nd IEEE/IFIP Int. Workshop on Broadband Convergence Networks, Munich, Germany, 2007, pp. 1–12.
[29]
N. Vulic, S. H. de Groot, and I. G. M. M. Niemegeers, DVB-H-UMTS integration at radio access level, in Proc. 2007 IEEE 65th Vehicular Technology Conf.-VTC2007-Spring, Dublin, Ireland, 2007, pp. 1250–1254.
[30]
X. D. Yang and T. J. Owens, Intersystem soft handover for converged DVB-H and UMTS networks, IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1887–1898, 2008.
[31]
A. A. Razzac, S. E. Elayoubi, T. Chahed, and B. El Hassan, Planning of mobile TV service in standalone and cooperative DVB-NGH and LTE networks, in Proc. 2013 11th Int. Symp. and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), Tsukuba Science City, Japan, 2013.
[32]
F. Foroughi, J. Lofgren, and O. Edfors, Channel estimation for a mobile terminal in a multi-standard environment (LTE and DVB-H), in Proc. 2009 3rd Int. Conf. on Signal Processing and Communication Systems, Omaha, NE, USA, 2011, p. 39.
[33]
D. M. Okamoto, L. A. R. da Silva Mello, and M. P. C. de Almeida, Analysis of the interference from LTE system in ISDB-TB digital TV system at 700 MHz, in Proc. 2015 SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC), Porto de Galinhas, Brazil, 2015.
[34]
C. A. Makluf, J. León, and Y. Iano, Digital TV (ISDB-TB) broadcasting over LTE broadcast: A feasibility study, in Proc. 3rd Brazilian Technology Symp., Campinas, Brazil, 2018, pp. 145–155.
[35]
M. Fuentes, D. Mi, H. Z. Chen, E. Garro, J. L. Carcel, D. Vargas, B. Mouhouche, and D. Gomez-Barquero, Physical layer performance evaluation of LTE-advanced pro broadcast and ATSC 3.0 systems, IEEE Trans. Broadcast., vol. 65, no. 3, pp. 477–488, 2019.
[36]
J. Y. Lee, S. I. Park, H. J. Yim, B. M. Lim, S. Kwon, S. Ahn, N. Hur, and H. M. Kim, ATSC 3.0 and LTE cooperation for LDM and SHVC based mobile broadcasting, in Proc. 2019 IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting (BMSB), Jeju, South Korea, 2019.
[37]
J. Y. Lee, S. I. Park, H. J. Yim, B. M. Lim, S. Kwon, S. Ahn, and N. Hur, IP-based cooperative services using ATSC 3.0 broadcast and broadband, IEEE Trans. Broadcast., vol. 66, no. 2, pp. 440–448, 2020.
[38]
J. Montalban, G. M. Muntean, and P. Angueira, A utility-based framework for performance and energy-aware convergence in 5G heterogeneous network environments, IEEE Trans. Broadcast., vol. 66, no. 2, pp. 589–599, 2020.
[39]
X. Y. Xu, D. X. Meng, Y. M. Chen, and J. W. He, Compatability study on broadcasting system interfering with LTE system, in Proc. 2012 IEEE 2nd Int. Conf. Cloud Computing and Intelligence Systems, Hangzhou, China, 2012, pp. 908–912.
[40]
L. F. Huang, X. L. Yang, Z. Y. Shi, T. Yuliang, X. Su, and J. Zeng, Analysis of coexistence between the DTMB system and TD-LTE system, in Proc. 2014 Tenth Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 2014, pp. 932–937.
[41]
J. Chen and M. Li, Coexistence analysis between eMTC and LTER/broadcasting service system in 450MHz-470MHz band, in Int. Conf. Inform. Commun. Signal Process. (ICICSP), Weihai, China, 2019, pp. 15–19.
[42]
J. Song, Z. X. Yang, L. Yang, K. Gong, C. Y. Pan, J. Wang, and Y. S. Wu, Technical review on Chinese digital terrestrial television broadcasting standard and measurements on some working modes, IEEE Trans. Broadcast., vol. 53, no. 1, pp. 1–7, 2007.
[43]
J. Song, C. Zhang, K. W. Peng, J. T. Wang, C. Y. Pan, F. Yang, J. Wang, H. Yang, Y. L. Xue, Y. Zhang, et al., Key technologies and measurements for DTMB-A system, IEEE Trans. Broadcast., vol. 65, no. 1, pp. 53–64, 2019.
[44]
J. J. Gimenez, J. L. Carcel, M. Fuentes, E. Garro, S. Elliott, D. Vargas, C. Menzel, and D. Gomez-Barquero, 5G new radio for terrestrial broadcast: A forward-looking approach for NR-MBMS, IEEE Trans. Broadcast., vol. 65, no. 2, pp. 356–368, 2019.
[45]
M. Säily, C. B. Estevan, J. J. Gimenez, F. Tesema, W. Guo, D. Gomez-Barquero, and D. Mi, 5G radio access network architecture for terrestrial broadcast services, IEEE Trans. Broadcast., vol. 66, no. 2, pp. 404–415, 2020.
[46]
Study on Architectural Enhancements for 5G Multicast-Broadcast Services (Release 17), v0.3.0, 3GPP, Rep. TR 23. 757, 2020.
[47]
Q. T. Zhang, J. Y. Chen, and H. B. Zhu, Network convergence: Theory, architectures, and applications, IEEE Wirel. Commun., vol. 21, no. 6, pp. 48–53, 2014.
[48]
J. Waterston, J. Rhea, S. Peterson, L. Bolick, J. Ayers, and J. Ellen, Ocean of things: Affordable maritime sensors with scalable analysis, in Proc. OCEANS 2019-Marseille, Marseille, France, 2019.
[49]
MBMS for Internet of Things (IoT), 3GPP TR 26.850, 2018.
[50]
X. R. Fan, H. Ding, Y. Y. Zhang, W. Trappe, Z. Han, and R. Howard, Distributed beamforming based wireless power transfer: analysis and realization, Tsinghua Science and Technology, vol. 25, no. 6, pp. 758–775, 2020.
[51]
O. Vikhrova, S. Pizzi, A. Iera, A. Molinaro, K. Samuylov, and G. Araniti, Performance analysis of paging strategies and data delivery approaches for supporting group-oriented IoT traffic in 5G networks, in Proc. 2019 IEEE Int. Symp. Broadband Multimedia Systems and Broadcasting (BMSB), Jeju, South Korea, 2019, pp. 1–5.
[52]
K. K. Wang, D. Z. He, Y. Xu, R. B. Cai, W, J. Zhang, and Y. Jian, IoT resource scheduling based on dedicated return channel in ATSC 3.0, in Proc. 2019 IEEE Int. Symp. Broadband Multimedia Systems and Broadcasting (BMSB), Jeju, South Korea, 2019.
[53]
S. Aslam, M. P. Michaelides, and H. Herodotou, Internet of ships: A survey on architectures, emerging applications, and challenges, IEEE Internet Things J., vol. 7, no. 10, pp. 9714–9727, 2020.
[54]
R. W. Liu, J. T. Nie, S. Garg, Z. H. Xiong, Y. Zhang, and M. S. Hossain, Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems, IEEE Internet Things J., , 2020.
[55]
I. Gómez, F. Valdés, B. Ares, J. Taibo, J. M. Ei Malek, and N. Alagha, Field trials of the VHF data exchange system (VDES) satellite downlink component, in Proc. Int. Communications Satellite Systems Conf. (ICSSC), Niagara Falls, Canada, 2018, pp. 1–8.
[56]
M. K. Shi, Y. Zhang, D. Y. Yao, and C. Lu, Application-oriented performance comparison of 802.11p and LTE-V in a V2V communication system, Tsinghua Science and Technology, vol. 24, no. 2, pp. 123–133, 2019.
[57]
L. Zhang, Y. Y. Wu, W. Li, K. Salehian, S. Lafleche, X. B. Wang, S. I. Park, H. M. Kim, J. Y. Lee, N. Hur, et al., Layered-division multiplexing: An enabling technology for multicast/broadcast service delivery in 5G, IEEE Commun. Mag., vol. 56, no. 3, pp. 82–90, 2018.
[58]
F. Colone, DVB-T based passive forward scatter radar: inherent limitations and enabling solutions, IEEE Trans. Aerosp. Electron. Syst., , 2020.
[59]
M. Alslaimy, R. J. Burkholder, and G. E. Smith, SINR modeling for evaluating the CRLB for ATSC signal based passive radar systems, in Proc. 2020 IEEE Int. Radar Conf. (RADAR), Washington, DC, USA, 2020, p. 19688656.
[60]
X. Zhang, J. X. Yi, X. R. Wan, and Y. Q. Liu, Reference signal reconstruction under oversampling for DTMB-based passive radar, IEEE Access, vol. 8, pp. 74024–74038, 2020.
[61]
Y. Fang, G. Atkinson, A. Sayin, J. Chen, P. B. Wang, M. Antoniou, and M. Cherniakov, Improved passive SAR imaging with DVB-T transmissions, IEEE Trans. Geosci. Remote Sens., vol. 58, no. 7, pp. 5066–5076, 2020.
[62]
G. Bournaka, M. Ummenhofer, D. Cristallini, J. Palmer, and A. Summers, Experimental study for transmitter imperfections in DVB-T based passive radar, IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 3, pp. 1341–1354, 2018.
[63]
K. M. Scott, W. C. Barott, and B. Himed, Illuminator selection statistics using ATSC passive radar with a mobile receiver, in Proc. 2018 IEEE Radar Conf. (RadarConf18), Oklahoma City, OK, USA, 2018, p. 17842583.
[64]
W. C. Barott and B. Himed, Cochannel interference in ATSC passive radar, in Proc. 2015 IEEE Radar Conf. (RadarCon), Arlington, VA, USA, 2015, p. 15240141.
[65]
G. Fang, J. X. Yi, Y. P. Dan, X. R. Wan, and H. Y. Ke, PN signal as a new illuminator of opportunity for passive radar applications, IEEE Geosci. Remote Sens. Lett., vol. 17, no. 1, pp. 67–71, 2020.
[66]
M. Lü, J. X. Yi, X. R. Wan, and W. J. Zhan, Cochannel interference in DTMB-based passive radar, IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 5, pp. 2138–2149, 2019.
Tsinghua Science and Technology
Pages 592-607
Cite this article:
Du J, Song J, Ren Y, et al. Convergence of Broadband and Broadcast/Multicast in Maritime Information Networks. Tsinghua Science and Technology, 2021, 26(5): 592-607. https://doi.org/10.26599/TST.2021.9010002

956

Views

51

Downloads

28

Crossref

24

Web of Science

29

Scopus

3

CSCD

Altmetrics

Received: 03 January 2021
Accepted: 17 January 2021
Published: 20 April 2021
© The author(s) 2021

© The author(s) 2021. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return