[1]
L. K. Li, Y. J. Yu, G. J. Ye, X. H. Chen, and Y. B. Zhang, Electronic properties of few-layer black phosphorus, Bull. Am. Phys. Soc., vol. 58, no. 1, p. 1, 2013.
[2]
L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol., vol. 9, no. 5, pp. 372–377, 2014.
[3]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano, vol. 8, no. 4, pp. 4033–4041, 2014.
[4]
Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling, ACS Nano, vol. 8, no. 10, pp. 10 035–10 042, 2014.
[5]
H. O. H. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol., vol. 9, no. 5, pp. 330–331, 2014.
[6]
R. Gusmão, Z. Sofer, and M. Pumera, Black phosphorus rediscovered: From bulk material to monolayers, Angew. Chem., Int. Ed., vol. 56, no. 28, pp. 8052–8072, 2017.
[7]
Y. Ren and F. Cheng, Ballistic transport through a strained region on monolayer phosphorene, Chin. Phys. Lett., vol. 34, no. 2, p. 027302, 2017.
[8]
Z. Nourbakhsh and R. Asgari, Charge transport in doped zigzag phosphorene nanoribbons, Phys. Rev. B, vol. 97, p. 235406, 2018.
[9]
X. F. Li, Z. Q. Yu, X. Xiong, T. Y. Li, T. T. Gao, R. S. Wang, R. Huang, and Y. Q. Wu, High-speed black phosphorus field-effect transistors approaching ballistic limit, Sci. Adv., vol. 5, no. 6, p. eaau3194, 2019.
[10]
N. R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P. M. Ajayan, and L. Balicas, Ambipolar molybdenum diselenide field-effect transistors: Field-effect and hall mobilities, ACS Nano, vol. 8, no. 8, pp. 7923–7929, 2014.
[11]
S. Das and J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics, Appl. Phys. Lett., vol. 103, no. 10, p. 103501, 2013.
[12]
Z. G. Wang, Q. Li, Y. F. Chen, B. X. Cui, Y. R. Li, F. Besenbacher, and M. D. Dong, The ambipolar transport behavior of WSe2 transistors and its analogue circuits, NPG Asia Mater., vol. 10, no. 8, pp. 703–712, 2018.
[13]
C. Q. Yin, Y. X. Li, J. B. Wang, X. F. Wang, Y. Yang, and T. L. Ren, Carbon nanotube transistor with short-term memory, Tsinghua Science and Technology, vol. 21, no. 4, pp. 442–448, 2016.
[14]
Y. Ren, X. Y. Yang, L. Zhou, J. Y. Mao, S. T. Han, and Y. Zhou, Recent advances in ambipolar transistors for functional applications, Adv. Funct. Mater., vol. 29, no. 40, p. 1902105, 2019.
[15]
P. Wu, D. Reis, X. S. Hu, and J. Appenzeller, Two-dimensional transistors with reconfigurable polarities for secure circuits, Nat. Electron., vol. 4, no. 1, pp. 45–53, 2021.
[16]
A. Castellanos-Gomez, Black phosphorus: Narrow gap, wide applications, J. Phys. Chem. Lett., vol. 6, no. 21, pp. 4280–4291, 2015.
[17]
W. N. Hu, Z. Sheng, X. Hou, H. W. Chen, Z. X. Zhang, D. W. Zhang, and P. Zhou, Ambipolar 2D semiconductors and emerging device applications, Small Methods, vol. 5, no. 1, p. 2000837, 2021.
[18]
G. Gildenblat, Compact Modeling: Principles, Techniques and Applications. Dordrecht, the Netherlands: Springer, 2010.
[19]
J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., vol. 5, no. 1, p. 4475, 2014.
[20]
S. J. Liu, N. J. Huo, S. Gan, Y. Li, Z. M. Wei, B. J. Huang, J. Liu, J. B. Li, and H. D. Chen, Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus, J. Mater. Chem. C, vol. 3, no. 42, pp. 10 974–10 980, 2015.
[21]
A. N. Rudenko and M. I. Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B, vol. 89, p. 201408(R), 2014.
[22]
X. X. Cui, D. Han, H. L. Guo, L. W. Zhou, J. S. Qiao, Q. Liu, Z. H. Cui, Y. F. Li, C. W. Lin, L. M. Cao, et al., Realizing nearly-free-electron like conduction band in a molecular film through mediating intermolecular van der Waals interactions, Nat. Commun., vol. 10, p. 3374, 2019.
[23]
K. Ko, M. Kang, J. Jeon, and H. Shin, Compact model strategy of metal-gate work-function variation for Ultrascaled FinFET and vertical GAA FETs, IEEE Trans. Electron Devices, vol. 66, no. 3, pp. 1613–1616, 2019.
[24]
H. C. Pao and C. T. Sah, Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors, Solid-State Electron., vol. 9, no. 10, pp. 927–937, 1966.
[25]
C. Gupta, R. Goel, H. Agarwal, C. M. Hu, and Y. S. Chauhan, BSIM-BULK: Accurate compact model for analog and RF circuit design, presented at IEEE Custom Integrated Circuits Conf., Austin, TX, USA, 2019, pp. 1–8.
[26]
J. G. Champlain, On the use of the term “ambipolar”, Appl. Phys. Lett., vol. 99, p. 123502, 2011.
[27]
P. Wu, T. Ameen, H. R. Zhang, L. A. Bendersky, H. Ilatikhameneh, G. Klimeck, R. Rahman, A. V. Davydov, and J. Appenzeller, Complementary black phosphorus tunneling field-effect transistors, ACS Nano, vol. 13, no. 1, pp. 377–385, 2019.
[28]
D. J. Perello, S. H. Chae, S. Song, and Y. H. Lee, High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering, Nat. Commun., vol. 6, p. 7809, 2015.
[29]
M. Lundstrom, Fundamentals of Carrier Transport. 2nd ed. Cambridge, UK: Cambridge University Press, 2000.
[30]
S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable transport gap in phosphorene, Nano Lett., vol. 14, no. 10, pp. 5733–5739, 2014.
[31]
S. Das, M. Demarteau, and A. Roelofs, Ambipolar phosphorene field effect transistor, ACS Nano, vol. 8, no. 11, pp. 11 730–11 738, 2014.
[32]
I. S. Esqueda, C. D. Cress, Y. C. Che, Y. Cao, and C. W. Zhou, Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure, J. Appl. Phys., vol. 115, p. 054506, 2014.
[33]
A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model, Nat. Commun., vol. 6, p. 8948, 2015.
[34]
I. S. Esqueda, H. Tian, X. D. Yan, and H. Wang, Transport properties and device prospects of ultrathin black phosphorus on hexagonal boron nitride, IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5163–5171, 2017.
[35]
S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport– Part A: Basic Concepts. 2nd ed. Singapore: World Scientific Publishing, 2017.
[36]
R. H. Yan, A. Ourmazd, and K. F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk, IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1704–1710, 1992.
[37]
N. Haratipour, S. Namgung, S. H. Oh, and S. J. Koester, Fundamental limits on the subthreshold slope in Schottky source/drain black phosphorus field-effect transistors, ACS Nano, vol. 10, no. 3, pp. 3791–3800, 2016.
[38]
M. C. Robbins, N. Haratipour, and S. J. Koester, Band-to-band tunneling limited ambipolar current in black phosphorus MOSFETs, in Proc. 75th Annual Device Research Conf., South Bend, IN, USA, 2017, pp. 1–2.
[39]
S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge University Press, 1995.
[40]
I. S. Esqueda, C. D. Cress, Y. Cao, Y. Che, M. Fritze, and C. Zhou, The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors, J. Appl. Phys., vol. 117, p. 084319, 2015.
[41]
F. Liu, Y. J. Wang, X. Y. Liu, J. Wang, and H. Guo, Ballistic transport in monolayer black phosphorus transistors, IEEE Trans. Electron Devices, vol. 61, no. 11, pp. 3871–3876, 2014.
[42]
Y. Q. Cai, G. Zhang, and Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep., vol. 4, p. 6677, 2014.
[43]
J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. J. Yi, H. J. Choi, and K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science, vol. 349, no. 6249, pp. 723–726, 2015.
[44]
B. C. Deng, V. Tran, Y. J. Xie, H. Jiang, C. Li, Q. S. Guo, X. M. Wang, H. Tian, S. J. Koester, H. Wang, et al., Efficient electrical control of thin-film black phosphorus bandgap, Nat. Commun., vol. 8, p. 14474, 2017.
[45]
B. Jiang, X. M. Zou, J. Su, J. H. Liang, J. L. Wang, H. J. Liu, L. P. Feng, C. Z. Jiang, F. Wang, J. He, et al., Impact of thickness on contact issues for pinning effect in black phosphorus field-effect transistors, Adv. Funct. Mater., vol. 28, no. 26, p. 1801398, 2018.
[46]
S. Y. Lee, W. S. Yun, and J. D. Lee, New method to determine the Schottky barrier in few-layer black phosphorus metal contacts, ACS Appl. Mater. Interfaces, vol. 9, no. 8, pp. 7873–7877, 2017.
[47]
Y. Z. Guo and J. Robertson, Band offsets and metal contacts in monolayer black phosphorus, Microelectron. Eng., vol. 178, pp. 108–111, 2017.
[48]
J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
[49]
A. Gil, J. Segura, and N. M. Temme, Numerical Methods for Special Functions. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2007.
[50]
J. J. Sakurai and J. J. Napolitano, Modern Quantum Mechanics. 2nd ed. Cambridge, UK: Cambridge University Press, 2017.
[51]
K. F. Brennan and C. J. Summers, Theory of resonant tunneling in a variably spaced multiquantum well structure: An Airy function approach, J. Appl. Phys., vol. 61, no. 2, pp. 614–623, 1987.
[52]
R. A. Vega, On the modeling and design of Schottky field-effect transistors, IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 866–874, 2006.
[53]
X. M. Guan, D. Kim, K. C. Saraswat, and H. S. P. Wong, Complex band structures: From parabolic to elliptic approximation, IEEE Electron Device Lett., vol. 32, no. 9, pp. 1296–1298, 2011.
[54]
J. Callaway, Quantum Theory of the Solid State. New York, NY, USA: Academic Press, 1976.
[55]
X. D. Yan, H. Wang, and I. S. Esqueda, Temperature-dependent transport in ultrathin black phosphorus field-effect transistors, Nano Lett., vol. 19, no. 1, pp. 482–487, 2019.
[56]
C. Guo, L. Wang, H. Z. Xing, and X. S. Chen, The study of ambipolar behavior in phosphorene field-effect transistors, J. Appl. Phys., vol. 120, p. 215701, 2016.
[57]
E. G. Marin, S. J. Bader, and D. Jena, A new holistic model of 2-D semiconductor FETs, IEEE Trans. Electron Devices, vol. 65, no. 3, pp. 1239–1245, 2018.
[58]
E. Yarmoghaddam, N. Haratipour, S. J. Koester, and S. Rakheja, A physics-based compact model for ultrathin black phosphorus FETs – Part I: Effect of contacts, temperature, ambipolarity, and traps, IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 389–396, 2020.
[59]
E. Yarmoghaddam, N. Haratipour, S. J. Koester, and S. Rakheja, A physics-based compact model for ultrathin black phosphorus FETs – Part II: Model validation against numerical and experimental data, IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 397–405, 2020.
[60]
A. Ueda, Y. J. Zhang, N. Sano, H. Imamura, and Y. Iwasa, Ambipolar device simulation based on the drift-diffusion model in ion-gated transition metal dichalcogenide transistors, NPJ Comput. Mater., vol. 6, p. 24, 2020.
[61]
C. T. Sah, The spatial variation of the quasi-Fermi potentials in p-n junctions, IEEE Trans. Electron Devices, vol. ED-13, no. 12, pp. 839–846, 1966.
[62]
C. T. Sah, Characteristics of the metal-oxide-semiconductor transistors, IEEE Trans. Electron Devices, vol. 11, no. 7, pp. 324–345, 1964.
[63]
N. W. Ashcroft and N. D. Mermin, Solid State Physics. Philadelphia, PA, USA: Saunders College, 1976.
[64]
J. R. Schrieffer, Effective carrier mobility in surface-space charge layers, Phys. Rev., vol. 97, p. 641, 1955.
[65]
R. F. Greene, D. R. Frankl, and J. Zemel, Surface transport in semiconductors, Phys. Rev., vol. 118, p. 967, 1960.
[66]
R. F. Greene, Nonlocal transport and cuspidal surface mobility in semiconductors, Phys. Rev., vol. 131, p. 592, 1963.
[67]
R. H. Kingston and S. F. Neustadter, Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor, J. Appl. Phys., vol. 26, p. 718, 1955.
[68]
F. Stern and W. E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit, Phys. Rev., vol. 163, p. 816, 1967.
[69]
F. Stern, Self-consistent results for n-type Si inversion layers, Phys. Rev. B, vol. 5, p. 4891, 1972.
[70]
R. B. Dingle, The Fermi-Dirac integrals Fp(η)=(p!)-1∫o∞ϵp(eϵ-η+1)-1dϵ, Appl. Sci. Res., Sect. B, vol. 6, no. 1, pp. 225–239, 1957.
[71]
T. Fukushima, Precise and fast computation of Fermi–Dirac integral of integer and half integer order by piecewise minimax rational approximation, Appl. Math. Comput., vol. 259, pp. 708–729, 2015.
[72]
O. N. Koroleva, A. V. Mazhukin, V. I. Mazhukin, and P. V. Breslavskiy, Analytical approximation of the Fermi-Dirac integrals of half-integer and integer orders, Math. Models Comput. Simul., vol. 9, no. 3, pp. 383–389, 2017.
[73]
G. T. Wright, Threshold modelling of MOSFETs for CAD of CMOS-VLSI, Electron. Lett., vol. 21, no. 6, pp. 223–224, 1985.
[74]
G. Mugnaini and G. Iannaccone, Physics-based compact model of nanoscale MOSFETs–Part I: Transition from drift-diffusion to ballistic transport, IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1795–1801, 2005.
[75]
F. Telesio, G. le Gal, M. Serrano-Ruiz, F. Prescimone, S. Toffanin, M. Peruzzini, and S. Heun, Ohmic contact engineering in few-layer black phosphorus: Approaching the quantum limit, Nanotechnology, vol. 31, p. 334002, 2020.
[76]
Y. J. Xu, Z. Shi, X. Y. Shi, K. Zhang, and H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications, Nanoscale, vol. 11, no. 31, pp. 14 491–14 527, 2019.
[77]
Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor. 3rd ed. Oxford, UK: Oxford University Press, 2011.
[78]
N. Ma and D. Jena, Charge scattering and mobility in atomically thin semiconductors, Phys. Rev. X, vol. 4, p. 011043, 2014.
[79]
B. C. Yang, B. S. Wan, Q. H. Zhou, Y. Wang, W. T. Hu, W. M. Lv, Q. Chen, Z. M. Zeng, F. S. Wen, J. Y. Xiang, et al., Te-doped black phosphorus field-effect transistors, Adv. Mater., vol. 28, no. 42, pp. 9408–9415, 2016.
[80]
D. Xiang, C. Han, J. Wu, S. Zhong, Y. Y. Liu, J. D. Lin, X. A. Zhang, W. P. Hu, B. Özyilmaz, A. H. C. Neto, et al., Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus, Nat. Commun., vol. 6, p. 6485, 2015.
[81]
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, et al., Isolation and characterization of few-layer black phosphorus, 2D Mater., vol. 1, no. 2, p. 025001, 2014.
[82]
L. Wei, O. Mysore, and D. Antoniadis, Virtual-source-based self-consistent current and charge FET models: From ballistic to drift-diffusion velocity-saturation operation, IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1263–1271, 2012
[83]
S. Rakheja, Y. Q. Wu, H. Wang, T. Palacios, P. Avouris, and D. A. Antoniadis, An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors, IEEE Trans. Nanotechnol., vol. 13, no. 5, pp. 1005–1013, 2014.
[84]
S. Rakheja, M. S. Lundstrom, and D. A. Antoniadis, An improved virtual-source-based transport model for quasi-ballistic transistors–Part I: Capturing effects of carrier degeneracy, drain-bias dependence of gate capacitance, and nonlinear channel-access resistance, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2786–2793, 2015.
[85]
S. Rakheja, M. S. Lundstrom, and D. A. Antoniadis, An improved virtual-source-based transport model for quasi-ballistic transistors–Part II: Experimental verification, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2794–2801, 2015.
[86]
D. H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, Extraction of virtual-source injection velocity in sub-100 nm III-V HFETs, presented at 2009 IEEE Int. Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1–4.
[87]
A. Nourbakhsh, A. Zubair, R. N. Sajjad, K. G. A. Tavakkoli, W. Chen, S. Fang, X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras, et al., MoS2 field-effect transistor with Sub-10 nm channel length, Nano Lett., vol. 16, no. 12, pp. 7798–7806, 2016.
[88]
S. Rakheja, M. Lundstrom, and D. Antoniadis, A physics-based compact model for FETs from diffusive to ballistic carrier transport regimes, presented at 2014 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2014, pp. 35.1.1–35.1.4.
[89]
M. Lundstrom, S. Datta, and X. S. Sun, Emission-diffusion theory of the MOSFET, IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4174–4178, 2015.
[90]
E. Yarmoghaddam, N. Haratipour, S. J. Koester, and S. Rakheja, A virtual-source emission-diffusion I-V model for ultra-thin black phosphorus field-effect transistors, J. Appl. Phys., vol. 125, p. 165706, 2019.
[91]
C. R. Crowell and S. M. Sze, Current transport in metal-semiconductor barriers, Solid State Electron., vol. 9, no. 11–12, pp. 1035–1048, 1966.
[92]
A. Owczarek, Punch-through phenomenon in MOS transistors, Electron Technol., vol. 13, nos. 1&2, pp. 55–65, 1980.
[93]
M. S. Lundstrom and D. A. Antoniadis, Compact models and the physics of nanoscale FETs, IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 225–233, 2014.
[94]
C. S. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. S. P. Wong, A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime–Part I: Intrinsic elements, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3061–3069, 2015.
[95]
C. S. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. S. P. Wong, A compact virtual-source model for carbon nanotube FETs in the Sub-10-nm regime–Part II: Extrinsic elements, performance assessment, and design optimization, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3070–3078, 2015.
[96]
D. A. Antoniadis, I. Aberg, C. N. Chléirigh, O. M. Nayfeh, A. Khakifirooz, and J. L. Hoyt, Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations, IBM J. Res. Dev., vol. 50, nos. 4&5, pp. 363–376, 2006.
[97]
A. Khakifirooz and D. A. Antoniadis, Transistor performance scaling: The role of virtual source velocity and its mobility dependence, presented at 2006 Int. Electron Devices Meeting, San Francisco, CA, USA, 2006, pp. 1–4.
[98]
A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, A simple semiempirical short-channel MOSFET current-voltage model continuous across all regions of operation and employing only physical parameters, IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1674–1680, 2009.
[99]
M. Lundstrom, Elementary scattering theory of the Si MOSFET, IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, 1997.
[100]
K. Natori, Ballistic metal-oxide-semiconductor field effect transistor, J. Appl. Phys., vol. 76, no. 8, pp. 4879–4890, 1994.
[101]
Y. Liu, M. Luisier, A. Majumdar, D. A. Antoniadis, and M. S. Lundstrom, On the interpretation of ballistic injection velocity in deeply scaled MOSFETs, IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 994–1001, 2012.
[102]
A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, Theory of ballistic nanotransistors, IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1853–1864, 2003.