Journal Home > Volume 26 , Issue 5

Three main ambipolar compact models for Two-Dimensional (2D) materials based Field-Effect Transistors (2D-FETs) are reviewed: (1) Landauer model, (2) 2D Pao-Sah model, and (3) virtual Source Emission-Diffusion (VSED) model. For the Landauer model, the Gauss quadrature method is applied, and it summarizes all kinds of variants, exhibiting its state-of-art. For the 2D Pao-Sah model, the aspects of its theoretical fundamentals are rederived, and the electrostatic potentials of electrons and holes are clarified. A brief development history is compiled for the VSED model. In summary, the Landauer model is naturally appropriate for the ballistic transport of short channels, and the 2D Pao-Sah model is applicable to long-channel devices. By contrast, the VSED model offers a smooth transition between ultimate cases. These three models cover a fairly completed channel length range, which enables researchers to choose the appropriate compact model for their works.


menu
Abstract
Full text
Outline
About this article

Ambipolar Transport Compact Models for Two-Dimensional Materials Based Field-Effect Transistors

Show Author's information Zhaoyi YanGuangyang GouJie RenFan WuYang ShenHe Tian( )Yi Yang ( )Tian-Ling Ren ( )
Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Institute of Microelectronics, and Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

Three main ambipolar compact models for Two-Dimensional (2D) materials based Field-Effect Transistors (2D-FETs) are reviewed: (1) Landauer model, (2) 2D Pao-Sah model, and (3) virtual Source Emission-Diffusion (VSED) model. For the Landauer model, the Gauss quadrature method is applied, and it summarizes all kinds of variants, exhibiting its state-of-art. For the 2D Pao-Sah model, the aspects of its theoretical fundamentals are rederived, and the electrostatic potentials of electrons and holes are clarified. A brief development history is compiled for the VSED model. In summary, the Landauer model is naturally appropriate for the ballistic transport of short channels, and the 2D Pao-Sah model is applicable to long-channel devices. By contrast, the VSED model offers a smooth transition between ultimate cases. These three models cover a fairly completed channel length range, which enables researchers to choose the appropriate compact model for their works.

Keywords: Field-Effect Transistor (FET), compact model, ambipolar transport, Landauer formula, Pao-Sah model, virtual source

References(102)

[1]
L. K. Li, Y. J. Yu, G. J. Ye, X. H. Chen, and Y. B. Zhang, Electronic properties of few-layer black phosphorus, Bull. Am. Phys. Soc., vol. 58, no. 1, p. 1, 2013.
[2]
L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol., vol. 9, no. 5, pp. 372–377, 2014.
[3]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano, vol. 8, no. 4, pp. 4033–4041, 2014.
[4]
Y. C. Du, H. Liu, Y. X. Deng, and P. D. Ye, Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling, ACS Nano, vol. 8, no. 10, pp. 10 035–10 042, 2014.
[5]
H. O. H. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol., vol. 9, no. 5, pp. 330–331, 2014.
[6]
R. Gusmão, Z. Sofer, and M. Pumera, Black phosphorus rediscovered: From bulk material to monolayers, Angew. Chem., Int. Ed., vol. 56, no. 28, pp. 8052–8072, 2017.
[7]
Y. Ren and F. Cheng, Ballistic transport through a strained region on monolayer phosphorene, Chin. Phys. Lett., vol. 34, no. 2, p. 027302, 2017.
[8]
Z. Nourbakhsh and R. Asgari, Charge transport in doped zigzag phosphorene nanoribbons, Phys. Rev. B, vol. 97, p. 235406, 2018.
[9]
X. F. Li, Z. Q. Yu, X. Xiong, T. Y. Li, T. T. Gao, R. S. Wang, R. Huang, and Y. Q. Wu, High-speed black phosphorus field-effect transistors approaching ballistic limit, Sci. Adv., vol. 5, no. 6, p. eaau3194, 2019.
[10]
N. R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P. M. Ajayan, and L. Balicas, Ambipolar molybdenum diselenide field-effect transistors: Field-effect and hall mobilities, ACS Nano, vol. 8, no. 8, pp. 7923–7929, 2014.
[11]
S. Das and J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics, Appl. Phys. Lett., vol. 103, no. 10, p. 103501, 2013.
[12]
Z. G. Wang, Q. Li, Y. F. Chen, B. X. Cui, Y. R. Li, F. Besenbacher, and M. D. Dong, The ambipolar transport behavior of WSe2 transistors and its analogue circuits, NPG Asia Mater., vol. 10, no. 8, pp. 703–712, 2018.
[13]
C. Q. Yin, Y. X. Li, J. B. Wang, X. F. Wang, Y. Yang, and T. L. Ren, Carbon nanotube transistor with short-term memory, Tsinghua Science and Technology, vol. 21, no. 4, pp. 442–448, 2016.
[14]
Y. Ren, X. Y. Yang, L. Zhou, J. Y. Mao, S. T. Han, and Y. Zhou, Recent advances in ambipolar transistors for functional applications, Adv. Funct. Mater., vol. 29, no. 40, p. 1902105, 2019.
[15]
P. Wu, D. Reis, X. S. Hu, and J. Appenzeller, Two-dimensional transistors with reconfigurable polarities for secure circuits, Nat. Electron., vol. 4, no. 1, pp. 45–53, 2021.
[16]
A. Castellanos-Gomez, Black phosphorus: Narrow gap, wide applications, J. Phys. Chem. Lett., vol. 6, no. 21, pp. 4280–4291, 2015.
[17]
W. N. Hu, Z. Sheng, X. Hou, H. W. Chen, Z. X. Zhang, D. W. Zhang, and P. Zhou, Ambipolar 2D semiconductors and emerging device applications, Small Methods, vol. 5, no. 1, p. 2000837, 2021.
[18]
G. Gildenblat, Compact Modeling: Principles, Techniques and Applications. Dordrecht, the Netherlands: Springer, 2010.
[19]
J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., vol. 5, no. 1, p. 4475, 2014.
[20]
S. J. Liu, N. J. Huo, S. Gan, Y. Li, Z. M. Wei, B. J. Huang, J. Liu, J. B. Li, and H. D. Chen, Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus, J. Mater. Chem. C, vol. 3, no. 42, pp. 10 974–10 980, 2015.
[21]
A. N. Rudenko and M. I. Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B, vol. 89, p. 201408(R), 2014.
[22]
X. X. Cui, D. Han, H. L. Guo, L. W. Zhou, J. S. Qiao, Q. Liu, Z. H. Cui, Y. F. Li, C. W. Lin, L. M. Cao, et al., Realizing nearly-free-electron like conduction band in a molecular film through mediating intermolecular van der Waals interactions, Nat. Commun., vol. 10, p. 3374, 2019.
[23]
K. Ko, M. Kang, J. Jeon, and H. Shin, Compact model strategy of metal-gate work-function variation for Ultrascaled FinFET and vertical GAA FETs, IEEE Trans. Electron Devices, vol. 66, no. 3, pp. 1613–1616, 2019.
[24]
H. C. Pao and C. T. Sah, Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors, Solid-State Electron., vol. 9, no. 10, pp. 927–937, 1966.
[25]
C. Gupta, R. Goel, H. Agarwal, C. M. Hu, and Y. S. Chauhan, BSIM-BULK: Accurate compact model for analog and RF circuit design, presented at IEEE Custom Integrated Circuits Conf., Austin, TX, USA, 2019, pp. 1–8.
[26]
J. G. Champlain, On the use of the term “ambipolar”, Appl. Phys. Lett., vol. 99, p. 123502, 2011.
[27]
P. Wu, T. Ameen, H. R. Zhang, L. A. Bendersky, H. Ilatikhameneh, G. Klimeck, R. Rahman, A. V. Davydov, and J. Appenzeller, Complementary black phosphorus tunneling field-effect transistors, ACS Nano, vol. 13, no. 1, pp. 377–385, 2019.
[28]
D. J. Perello, S. H. Chae, S. Song, and Y. H. Lee, High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering, Nat. Commun., vol. 6, p. 7809, 2015.
[29]
M. Lundstrom, Fundamentals of Carrier Transport. 2nd ed. Cambridge, UK: Cambridge University Press, 2000.
[30]
S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable transport gap in phosphorene, Nano Lett., vol. 14, no. 10, pp. 5733–5739, 2014.
[31]
S. Das, M. Demarteau, and A. Roelofs, Ambipolar phosphorene field effect transistor, ACS Nano, vol. 8, no. 11, pp. 11 730–11 738, 2014.
[32]
I. S. Esqueda, C. D. Cress, Y. C. Che, Y. Cao, and C. W. Zhou, Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure, J. Appl. Phys., vol. 115, p. 054506, 2014.
[33]
A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model, Nat. Commun., vol. 6, p. 8948, 2015.
[34]
I. S. Esqueda, H. Tian, X. D. Yan, and H. Wang, Transport properties and device prospects of ultrathin black phosphorus on hexagonal boron nitride, IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5163–5171, 2017.
[35]
S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport– Part A: Basic Concepts. 2nd ed. Singapore: World Scientific Publishing, 2017.
[36]
R. H. Yan, A. Ourmazd, and K. F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk, IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1704–1710, 1992.
[37]
N. Haratipour, S. Namgung, S. H. Oh, and S. J. Koester, Fundamental limits on the subthreshold slope in Schottky source/drain black phosphorus field-effect transistors, ACS Nano, vol. 10, no. 3, pp. 3791–3800, 2016.
[38]
M. C. Robbins, N. Haratipour, and S. J. Koester, Band-to-band tunneling limited ambipolar current in black phosphorus MOSFETs, in Proc. 75th Annual Device Research Conf., South Bend, IN, USA, 2017, pp. 1–2.
[39]
S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge University Press, 1995.
[40]
I. S. Esqueda, C. D. Cress, Y. Cao, Y. Che, M. Fritze, and C. Zhou, The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors, J. Appl. Phys., vol. 117, p. 084319, 2015.
[41]
F. Liu, Y. J. Wang, X. Y. Liu, J. Wang, and H. Guo, Ballistic transport in monolayer black phosphorus transistors, IEEE Trans. Electron Devices, vol. 61, no. 11, pp. 3871–3876, 2014.
[42]
Y. Q. Cai, G. Zhang, and Y. W. Zhang, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep., vol. 4, p. 6677, 2014.
[43]
J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B. G. Park, J. Denlinger, Y. J. Yi, H. J. Choi, and K. S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus, Science, vol. 349, no. 6249, pp. 723–726, 2015.
[44]
B. C. Deng, V. Tran, Y. J. Xie, H. Jiang, C. Li, Q. S. Guo, X. M. Wang, H. Tian, S. J. Koester, H. Wang, et al., Efficient electrical control of thin-film black phosphorus bandgap, Nat. Commun., vol. 8, p. 14474, 2017.
[45]
B. Jiang, X. M. Zou, J. Su, J. H. Liang, J. L. Wang, H. J. Liu, L. P. Feng, C. Z. Jiang, F. Wang, J. He, et al., Impact of thickness on contact issues for pinning effect in black phosphorus field-effect transistors, Adv. Funct. Mater., vol. 28, no. 26, p. 1801398, 2018.
[46]
S. Y. Lee, W. S. Yun, and J. D. Lee, New method to determine the Schottky barrier in few-layer black phosphorus metal contacts, ACS Appl. Mater. Interfaces, vol. 9, no. 8, pp. 7873–7877, 2017.
[47]
Y. Z. Guo and J. Robertson, Band offsets and metal contacts in monolayer black phosphorus, Microelectron. Eng., vol. 178, pp. 108–111, 2017.
[48]
J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
[49]
A. Gil, J. Segura, and N. M. Temme, Numerical Methods for Special Functions. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2007.
[50]
J. J. Sakurai and J. J. Napolitano, Modern Quantum Mechanics. 2nd ed. Cambridge, UK: Cambridge University Press, 2017.
[51]
K. F. Brennan and C. J. Summers, Theory of resonant tunneling in a variably spaced multiquantum well structure: An Airy function approach, J. Appl. Phys., vol. 61, no. 2, pp. 614–623, 1987.
[52]
R. A. Vega, On the modeling and design of Schottky field-effect transistors, IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 866–874, 2006.
[53]
X. M. Guan, D. Kim, K. C. Saraswat, and H. S. P. Wong, Complex band structures: From parabolic to elliptic approximation, IEEE Electron Device Lett., vol. 32, no. 9, pp. 1296–1298, 2011.
[54]
J. Callaway, Quantum Theory of the Solid State. New York, NY, USA: Academic Press, 1976.
[55]
X. D. Yan, H. Wang, and I. S. Esqueda, Temperature-dependent transport in ultrathin black phosphorus field-effect transistors, Nano Lett., vol. 19, no. 1, pp. 482–487, 2019.
[56]
C. Guo, L. Wang, H. Z. Xing, and X. S. Chen, The study of ambipolar behavior in phosphorene field-effect transistors, J. Appl. Phys., vol. 120, p. 215701, 2016.
[57]
E. G. Marin, S. J. Bader, and D. Jena, A new holistic model of 2-D semiconductor FETs, IEEE Trans. Electron Devices, vol. 65, no. 3, pp. 1239–1245, 2018.
[58]
E. Yarmoghaddam, N. Haratipour, S. J. Koester, and S. Rakheja, A physics-based compact model for ultrathin black phosphorus FETs – Part I: Effect of contacts, temperature, ambipolarity, and traps, IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 389–396, 2020.
[59]
E. Yarmoghaddam, N. Haratipour, S. J. Koester, and S. Rakheja, A physics-based compact model for ultrathin black phosphorus FETs – Part II: Model validation against numerical and experimental data, IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 397–405, 2020.
[60]
A. Ueda, Y. J. Zhang, N. Sano, H. Imamura, and Y. Iwasa, Ambipolar device simulation based on the drift-diffusion model in ion-gated transition metal dichalcogenide transistors, NPJ Comput. Mater., vol. 6, p. 24, 2020.
[61]
C. T. Sah, The spatial variation of the quasi-Fermi potentials in p-n junctions, IEEE Trans. Electron Devices, vol. ED-13, no. 12, pp. 839–846, 1966.
[62]
C. T. Sah, Characteristics of the metal-oxide-semiconductor transistors, IEEE Trans. Electron Devices, vol. 11, no. 7, pp. 324–345, 1964.
[63]
N. W. Ashcroft and N. D. Mermin, Solid State Physics. Philadelphia, PA, USA: Saunders College, 1976.
[64]
J. R. Schrieffer, Effective carrier mobility in surface-space charge layers, Phys. Rev., vol. 97, p. 641, 1955.
[65]
R. F. Greene, D. R. Frankl, and J. Zemel, Surface transport in semiconductors, Phys. Rev., vol. 118, p. 967, 1960.
[66]
R. F. Greene, Nonlocal transport and cuspidal surface mobility in semiconductors, Phys. Rev., vol. 131, p. 592, 1963.
[67]
R. H. Kingston and S. F. Neustadter, Calculation of the space charge, electric field, and free carrier concentration at the surface of a semiconductor, J. Appl. Phys., vol. 26, p. 718, 1955.
[68]
F. Stern and W. E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit, Phys. Rev., vol. 163, p. 816, 1967.
[69]
F. Stern, Self-consistent results for n-type Si inversion layers, Phys. Rev. B, vol. 5, p. 4891, 1972.
[70]
R. B. Dingle, The Fermi-Dirac integrals Fp(η)=(p!)-1oϵp(eϵ-η+1)-1dϵ, Appl. Sci. Res., Sect. B, vol. 6, no. 1, pp. 225–239, 1957.
[71]
T. Fukushima, Precise and fast computation of Fermi–Dirac integral of integer and half integer order by piecewise minimax rational approximation, Appl. Math. Comput., vol. 259, pp. 708–729, 2015.
[72]
O. N. Koroleva, A. V. Mazhukin, V. I. Mazhukin, and P. V. Breslavskiy, Analytical approximation of the Fermi-Dirac integrals of half-integer and integer orders, Math. Models Comput. Simul., vol. 9, no. 3, pp. 383–389, 2017.
[73]
G. T. Wright, Threshold modelling of MOSFETs for CAD of CMOS-VLSI, Electron. Lett., vol. 21, no. 6, pp. 223–224, 1985.
[74]
G. Mugnaini and G. Iannaccone, Physics-based compact model of nanoscale MOSFETs–Part I: Transition from drift-diffusion to ballistic transport, IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1795–1801, 2005.
[75]
F. Telesio, G. le Gal, M. Serrano-Ruiz, F. Prescimone, S. Toffanin, M. Peruzzini, and S. Heun, Ohmic contact engineering in few-layer black phosphorus: Approaching the quantum limit, Nanotechnology, vol. 31, p. 334002, 2020.
[76]
Y. J. Xu, Z. Shi, X. Y. Shi, K. Zhang, and H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications, Nanoscale, vol. 11, no. 31, pp. 14 491–14 527, 2019.
[77]
Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor. 3rd ed. Oxford, UK: Oxford University Press, 2011.
[78]
N. Ma and D. Jena, Charge scattering and mobility in atomically thin semiconductors, Phys. Rev. X, vol. 4, p. 011043, 2014.
[79]
B. C. Yang, B. S. Wan, Q. H. Zhou, Y. Wang, W. T. Hu, W. M. Lv, Q. Chen, Z. M. Zeng, F. S. Wen, J. Y. Xiang, et al., Te-doped black phosphorus field-effect transistors, Adv. Mater., vol. 28, no. 42, pp. 9408–9415, 2016.
[80]
D. Xiang, C. Han, J. Wu, S. Zhong, Y. Y. Liu, J. D. Lin, X. A. Zhang, W. P. Hu, B. Özyilmaz, A. H. C. Neto, et al., Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus, Nat. Commun., vol. 6, p. 6485, 2015.
[81]
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, et al., Isolation and characterization of few-layer black phosphorus, 2D Mater., vol. 1, no. 2, p. 025001, 2014.
[82]
L. Wei, O. Mysore, and D. Antoniadis, Virtual-source-based self-consistent current and charge FET models: From ballistic to drift-diffusion velocity-saturation operation, IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1263–1271, 2012
[83]
S. Rakheja, Y. Q. Wu, H. Wang, T. Palacios, P. Avouris, and D. A. Antoniadis, An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors, IEEE Trans. Nanotechnol., vol. 13, no. 5, pp. 1005–1013, 2014.
[84]
S. Rakheja, M. S. Lundstrom, and D. A. Antoniadis, An improved virtual-source-based transport model for quasi-ballistic transistors–Part I: Capturing effects of carrier degeneracy, drain-bias dependence of gate capacitance, and nonlinear channel-access resistance, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2786–2793, 2015.
[85]
S. Rakheja, M. S. Lundstrom, and D. A. Antoniadis, An improved virtual-source-based transport model for quasi-ballistic transistors–Part II: Experimental verification, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2794–2801, 2015.
[86]
D. H. Kim, J. A. del Alamo, D. A. Antoniadis, and B. Brar, Extraction of virtual-source injection velocity in sub-100 nm III-V HFETs, presented at 2009 IEEE Int. Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1–4.
[87]
A. Nourbakhsh, A. Zubair, R. N. Sajjad, K. G. A. Tavakkoli, W. Chen, S. Fang, X. Ling, J. Kong, M. S. Dresselhaus, E. Kaxiras, et al., MoS2 field-effect transistor with Sub-10 nm channel length, Nano Lett., vol. 16, no. 12, pp. 7798–7806, 2016.
[88]
S. Rakheja, M. Lundstrom, and D. Antoniadis, A physics-based compact model for FETs from diffusive to ballistic carrier transport regimes, presented at 2014 IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2014, pp. 35.1.1–35.1.4.
[89]
M. Lundstrom, S. Datta, and X. S. Sun, Emission-diffusion theory of the MOSFET, IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4174–4178, 2015.
[90]
E. Yarmoghaddam, N. Haratipour, S. J. Koester, and S. Rakheja, A virtual-source emission-diffusion I-V model for ultra-thin black phosphorus field-effect transistors, J. Appl. Phys., vol. 125, p. 165706, 2019.
[91]
C. R. Crowell and S. M. Sze, Current transport in metal-semiconductor barriers, Solid State Electron., vol. 9, no. 11–12, pp. 1035–1048, 1966.
[92]
A. Owczarek, Punch-through phenomenon in MOS transistors, Electron Technol., vol. 13, nos. 1&†2, pp. 55–65, 1980.
[93]
M. S. Lundstrom and D. A. Antoniadis, Compact models and the physics of nanoscale FETs, IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 225–233, 2014.
[94]
C. S. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. S. P. Wong, A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime–Part I: Intrinsic elements, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3061–3069, 2015.
[95]
C. S. Lee, E. Pop, A. D. Franklin, W. Haensch, and H. S. P. Wong, A compact virtual-source model for carbon nanotube FETs in the Sub-10-nm regime–Part II: Extrinsic elements, performance assessment, and design optimization, IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3070–3078, 2015.
[96]
D. A. Antoniadis, I. Aberg, C. N. Chléirigh, O. M. Nayfeh, A. Khakifirooz, and J. L. Hoyt, Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations, IBM J. Res. Dev., vol. 50, nos. 4&†5, pp. 363–376, 2006.
[97]
A. Khakifirooz and D. A. Antoniadis, Transistor performance scaling: The role of virtual source velocity and its mobility dependence, presented at 2006 Int. Electron Devices Meeting, San Francisco, CA, USA, 2006, pp. 1–4.
[98]
A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, A simple semiempirical short-channel MOSFET current-voltage model continuous across all regions of operation and employing only physical parameters, IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1674–1680, 2009.
[99]
M. Lundstrom, Elementary scattering theory of the Si MOSFET, IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, 1997.
[100]
K. Natori, Ballistic metal-oxide-semiconductor field effect transistor, J. Appl. Phys., vol. 76, no. 8, pp. 4879–4890, 1994.
[101]
Y. Liu, M. Luisier, A. Majumdar, D. A. Antoniadis, and M. S. Lundstrom, On the interpretation of ballistic injection velocity in deeply scaled MOSFETs, IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 994–1001, 2012.
[102]
A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, Theory of ballistic nanotransistors, IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1853–1864, 2003.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 November 2020
Accepted: 16 December 2020
Published: 20 April 2021
Issue date: October 2021

Copyright

© The author(s) 2021

Acknowledgements

This work was supported by the National Key R&D Program (Nos. 2016YFA0200400 and 2018YFC2001202), and the National Natural Science Foundation of China (Nos. 61434001, 61574083, 61874065, 51861145202, and U20A20168). The authors were also thankful for the support of the Research Fund from Tsinghua University Initiative Scientific Research Program, Beijing Innovation Center for Future Chip, Beijing Natural Science Foundation (No. 4184091), and Tsinghua-Fuzhou Institute for Date Technology (No. TFIDT2018008).

Rights and permissions

© The author(s) 2021. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Return