[1]
S. Pei, J. Guan, and S. Zhou, Fusion analysis of resting-state networks and its lication to Alzheimer’s disease, Tsinghua Science and Technology, vol. 24, no. 4, pp. 456-467, 2019.
[2]
D. L. Collins and J. C. Pruessner, Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion, NeuroImage, vol. 52, no. 4, pp. 1355-1366,2010.
[3]
A. R. Khan, N. Cherbuin, W. Wen, K. J. Anstey, P. Sachdev, and M. F. Beg, Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation, NeuroImage, vol. 56, no. 1, pp. 126-139, 2011.
[4]
F. Van der Lijn, T. den Heijer, M. M. B. Breteler, and W. J. Niessen, Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts, NeuroImage, vol. 43, no. 4, pp. 708-720, 2008.
[5]
D. Zarpalas, P. Gkontra, P. Daras, and N. Maglaveras, Hippocampus segmentation by optimizing the local contribution of image and prior terms, through graph cuts and multi-atlas, in Proc. 9th Int. Symp. Biomedical Imaging (ISBI), Barcelona, Spain, 2012, pp. 1168-1171.
[6]
M. Hajiesmaeili, B. Bagherinakhjavanlo, J. Dehmeshki, and T. Ellis, Segmentation of the Hippocampus for detection of Alzheimer’s disease, in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, C. Fowlkes, S. Wang, M. H. Choi, S. Mantler, J. Schulze, D. Acevedo, et al., eds. Berlin, Germany: Springer, 2012, pp. 42-54.
[7]
S. Pei, J. Guan, and S. Zhou, Fusion analysis of resting-state networks and its lication to Alzheimer’s disease, Tsinghua Science and Technology, vol. 24, no. 4, pp. 456-467, 2019.
[8]
E. A. A. Alaoui, S. C. K. Tekouabou, S. Hartini, Z. Rustam, H. Silkan, and S. Agoujil, Improvement in automated diagnosis of soft tissues tumors using machine learning, Big Data Mining and Analytics, vol. 4, no. 1, pp. 33-46, 2021.
[9]
E. Shelhamer, J. Long, and T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640-651, 2017.
[10]
O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in Proc. 18th Int. Conf. Medical Image Computing and Computer-Assisted Intervention MICCAI, Munich, Germany, 2015, pp. 234-241.
[11]
Y. N. Chen, B. B. Shi, Z. W. Wang, P. Zhang, C. D. Smith, and J. D. Liu, Hippocampus segmentation through multi-view ensemble ConvNets, in Proc. 14thIEEE Int. Symp. Biomedical Imaging (ISBI 2017), Melbourne, Australia, 2017, pp. 192-196.
[12]
Y. N. Chen, B. B. Shi, Z. W. Wang, T. Sun, C. D. Smith, and J. D. Liu, Accurate and consistent hippocampus segmentation through convolutional LSTM and view ensemble, in Int. Workshop on Machine Learning in Medical Imaging, Q. Wang, Y. H. Shi, H. I. Suk, and K. Suzuki, eds. Cham, Germany: Springer, 2017, pp. 88-96.
[13]
L. Cao, L. Li, J. F. Zheng, X. Fan, F. Yin, H. Shen, and J. Zhang, Multi-task neural networks for joint hippocampus segmentation and clinical score regression, Multimed. Tools Appl., vol. 77, no. 22, pp. 29669-29686, 2018.
[14]
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, 3D U-Net: Learning dense volumetric segmentation from sparse annotation, in Medical Image Computing and Computer-Assisted Intervention, S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, eds. Cham, Germany: Springer, 2016, pp. 424-432.
[15]
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 2672-2680.
[16]
M. Mirza and S. Osindero, Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784, 2014.
[17]
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets, in Proc. 30th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 2180-2188.
[18]
M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, in Proc. 34th Int. Conf. Machine Learning (ICML), Sydney, Australia, vol. 70, 2017, pp. 214-223.
[19]
T. Che, Y. R. Li, A. P. Jacob, T. Bengio, and W. J. Li, Mode regularized generative adversarial networks, in Int. Conf. Learning Representations (ICLR), Toulon, France, 2017.
[20]
Z. Zhang, G. Fu, R. Ni, J. Liu, and X. Yang, A generative method for steganography by cover synthesis with auxiliary semantics, Tsinghua Science and Technology, vol. 25, no. 4, pp. 516-527, 2020.
[21]
X. Wu, K. Xu, and P. Hall, A survey of image synthesis and editing with generative adversarial networks, Tsinghua Science and Technology, vol. 22, no. 6, pp. 660-674, 2017.
[22]
P. Luc, C. Couprie, S. Chintala, and J. Verbeek, Semantic segmentation using adversarial networks, presented at Computer Science-Computer Vision and Pattern Recognition, NIPS Workshop on Adversarial Training, Barcelona, Spain, 2016.
[23]
Y. Xue, T. Xu, H. Zhang, L. R. Long, and X. L. Huang, SegAN: adversarial network with multi-scale L1 loss for medical image segmentation, Neuroinformatics, vol. 16, no. 3, pp. 383-392, 2018.
[24]
T. Neff, C. Payer, D. Štern, and M. Urschler, Generative adversarial network based synthesis for supervised medical image segmentation, in OAGM & ARW Joint Workshop, Vienna, Austria, 2017.
[25]
A. K. Mondal, J. Dolz, and C Desrosiers, Few-shot 3d multi-modal medical image segmentation using generative adversarial learning, arXiv preprint arXiv: 1810.12241, 2018.
[26]
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. Van Ginneken, and C. I. Sánchez, A survey on deep learning in medical image analysis, Med. Image Anal., vol. 42, pp. 60-88, 2017.
[27]
B. Murugesan, K. Sarveswaran, R. S. Vijaya, S. M. Shankaranarayana, K. Ram, and M. Sivaprakasam, A context based deep learning approach for unbalanced medical image segmentation, presented at 2020 IEEE 17th Int. Symp. Biomedical Imaging (ISBI), Iowa City, IA, USA, 2020.
[28]
S. Izadi, Z. Mirikharaji, J. Kawahara, and G. Hamarneh, Generative adversarial networks to segment skin lesions, presented at 2018 IEEE 15th Int. Symp. Biomedical Imaging (ISBI 2018), Washington, DC, USA, 2018, pp. 881-884.
[29]
Z. J. Li, Y. Y. Wang, and J. H. Yu, Brain tumor segmentation using an adversarial network, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, A. Crimi, S. Bakas, H. Kuijf, B. Menze, and M. Reyes, eds. Cham, Germany: Springer, 2018, pp. 123-132.
[30]
Y. G. Shi, K. Cheng, and Z. W. Liu. Hippocampal subfields segmentation in brain MR images using generative adversarial networks, Biomed. Eng. Online, vol. 18, no. 1, p. 5, 2019.
[31]
B. Hui, Y. Liu, J. Qiu, L. Cao, L. Ji, and Z. He, Study of texture segmentation and classification for grading small hepatocellular carcinoma based on CT images, Tsinghua Science and Technology, vol. 26, no. 2, pp. 199-207, 2021.
[32]
J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, presented at 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, 2017, pp. 2242-2251.
[33]
K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep residual learning for image recognition, presented at 2016 IEEE Conf. Computer Vision & Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770-778.
[34]
J. Hu, L. Shen, S. Albanie, G. Sun, and E. H. Wu, Squeeze-and-excitation networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 2011-2023, 2020.
[35]
C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9.
[36]
T. Tong, R. Wolz, P. Coupé, J. V. Hajnal, and D. Rueckert, Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling, NeuroImage, vol. 76, pp. 11-23, 2013.
[37]
Y. T. Song, G. R. Wu, K. Bahrami, Q. S. Sun, and D. G. Shen, Progressive multi-atlas label fusion by dictionary evolution, Med. Image Anal., vol. 36, pp. 162-171, 2017.