[1]
S. X. Zheng, P. Ouyang, D. D. Song, L. D. Liu, S. J. Wei and S. Y. Yin, An ultra-Low power binarized convolutional neural network-based speech recognition processor with on-chip self-learning, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 12, pp. 4648–4661, 2019.
[2]
S. Schneider, A. Baevski, R. Collobert, and M. Auli, wav2vec: Unsupervised pre-training for speech recognition, arXiv preprint arXiv: 1904.05862, 2019.
[3]
A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M. X. Tan, W. J. Wang, Y. K. Zhu, R. M. Pang, V. Vasudevan, et al., Searching for MobileNetV3, arXiv preprint arXiv: 1905.02244, 2019.
[4]
Y. H. Chen, T. J. Yang, J. Emer, and V. Sze, Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308, 2019.
[5]
J. Song, Y. Cho, J. S. Park, J. W. Jang, S. Lee, J. H. Song, J. G. Lee, I. Kang, An 11.5 TOPS/W 1024-MAC butterfly structure dual-core sparsity-aware neural processing unit in 8 nm flagship mobile SoC, in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2019, pp. 130–132.
[6]
J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H. J. Yoo, LNPU: A 25.3 TFLOPS/W sparse deep-neural-network learning processor with fine-grained mixed precision of FP8-FP16, in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2019, pp. 142–144.
[7]
J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective. Boston, MA, USA: Springer, 2001, pp. 3–11.
[8]
P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to Asynchronous VLSI. Cambridge, UK: Cambridge University Press, 2010, pp. 7–9.
[9]
H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann, An asynchronous low-power 80C51 microcontroller, in Proc. 4th Int. Symp. Advanced Research in Asynchronous Circuits and Systems, San Diego, CA, USA, 1998, pp. 96–107.
[10]
P. A. Beerel and M. E. Roncken, Low power and energy efficient asynchronous design, Journal of Low Power Electronics, vol. 3, no. 3, pp. 234–253, 2007.
[11]
I. E. Sutherland, Micropipelines, Communications of the ACM, vol. 32, no. 6, pp. 720–738, 1989.
[12]
A. Steininger, V. S. Veeravalli, D. Alexandrescu, E. Costenaro, and L. Anghel, Exploring the state dependent SET sensitivity of asynchronous logic – The muller-pipeline example, in Proc. 32nd Int. Conf. Computer Design (ICCD), Seoul, South Korea, 2014, pp. 61–67.
[13]
F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. J. Nam, et al., TrueNorth: Design and tool flow of a 65mW 1 million neuron programmable neurosynaptic chip, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.
[14]
M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Q. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al., Loihi: A neuromorphic manycore processor with on-chip learning, IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
[15]
W. J. Chen, H. Wu, S. J. Wei, A. P. He, and H. Chen, An asynchronous energy-efficient CNN accelerator with reconfigurable architecture, in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Tainan, China, 2018, pp. 51–54.
[16]
A. Peeters, F. te Beest, M. de Wit, and W. Mallon, Click elements: An implementation style for data-driven compilation, in Proc. IEEE Symp. Asynchronous Circuits and Systems, Grenoble, France, 2010, pp. 3–14.