[1]
N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, Botnet in DDoS attacks: Trends and challenges, IEEE Commun. Surv. Tutor., vol. 17, no. 4, pp. 2242-2270, 2015.
[2]
C. L. Zhou, K. Chen, X. X. Gong, P. Chen, and H. Ma, Detection of fast-flux domains based on passive DNS analysis, (in Chinese), Acta Sci. Natur. Univ. Pekinensis, vol. 52, no. 3, pp. 396-402, 2016.
[3]
C. D. Chang and H. T. Lin, On similarities of string and query sequence for DGA botnet detection, in Proc. 2018 Int. Conf. on Information Networking, Chiang Mai, Thailand, 2018, pp. 104-109.
[4]
J. Kwon, J. Lee, H. Lee, and A. Perrig, PsyBoG: A scalable botnet detection method for large-scale DNS traffic, Comput Networks, vol. 97, pp. 48-73, 2016.
[5]
S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan, Detecting algorithmically generated domain-flux attacks with DNS traffic analysis, IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1663-1677, 2012.
[6]
S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, Phoenix: DGA-based botnet tracking and intelligence, presented at 11th Int. Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment, Egham, UK, 2014, pp. 192-211.
[7]
D. T. Truong and G. Cheng, Detecting domain-flux botnet based on DNS traffic features in managed network, Secur. Commun. Networks, vol. 9, no. 14, 2016, pp. 2338-2347.
[8]
V. Tong and G. Nguyen, A method for detecting DGA botnet based on semantic and cluster analysis, in Proc. Seventh Symp. on Information and Communication Technology, Ho Chi Minh City, Vietnam, 2016, pp. 272-277.
[9]
J. Mathew, M. Luo, C. K. Pang, and H. L. Chan, Kernel-based SMOTE for SVM classification of imbalanced datasets, in Proc. 41st Conf. of the IEEE Industrial Electronics Society, Yokohama, Japan, 2015, pp. 1127-1132.
[10]
W. C. Lin, C. F. Tsai, Y. H. Hu, and J. S. Jhang, Clustering-based undersampling in class-imbalanced data, Inf Sci, vol. 409-410, pp. 17-26, 2017.
[11]
J. Ha and J. S. Lee, A new under-sampling method using genetic algorithm for imbalanced data classification, presented at 10th Int. Conf. on Ubiquitous Information Management and Communication, Danang, Vietnam, 2016.
[12]
S. Gazzah, A. Hechkel, and N. E. B. Amara, A hybrid sampling method for imbalanced data, in Proc. 2015 IEEE 12th Int. Multi-Conference on Systems, Signals & Devices, Mahdia, Tunisia, 2015, pp. 1-6.
[13]
D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, A LSTM based framework for handling multiclass imbalance in DGA botnet detection, Neurocomputing, vol. 275, pp. 2401-2413, 2018.
[14]
Y. C. Chen, Y. J. Li, A. Tseng, and T. Lin, Deep learning for malicious flow detection, arXiv preprint arXiv: 1802.03358, 2018.
[15]
J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, Predicting domain generation algorithms with long short-term memory networks, arXiv preprint arXiv: 1611.00791, 2016.
[16]
Y. Li, K. Q. Xiong, T. Chin, and C. Hu, A machine learning framework for domain generation algorithm-based malware detection, IEEE Access, vol. 7, pp. 32 765-32 782, 2019.
[17]
F. Zeng, S. Chang, and X. C. Wan, Classification for DGA-based malicious domain names with deep learning architectures, Int. J. Intell. Inf. Syst., vol. 6, no. 6, pp. 67-71, 2017.
[18]
B. Athiwaratkun and J. W. Stokes, Malware classification with LSTM and GRU language models and a character-level CNN, in Proc. 2017 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 2017, pp. 2482-2486.
[19]
B. Yu, J. Pan, J. M. Hu, A. Nascimento, and M. De Cock, Character level based detection of DGA domain names, in Proc. 2018 Int. Joint Conf. on Neural Networks, Rio de Janeiro, Brazil, 2018, pp. 1-8.
[20]
L. L. Gao, Z. Guo, H. W. Zhang, X. Xu, and H. T. Shen, Video captioning with attention-based LSTM and semantic consistency, IEEE Trans. Multimed., vol. 19, no. 9, pp. 2045-2055, 2017.