Journal Home > Volume 24 , Issue 4

To satisfy the ever-increasing bandwidth demand of modern data centers, researchers have proposed hybrid Data Center Networks (DCNs), which employ high-bandwidth Optical Circuit Switches (OCSs) to compensate for Electrical Packet Switches (EPS). Existing designs, such as Helios and c-Through, mainly focus on reconfiguring optical devices to meet the estimated traffic requirements. However, these designs face two major challenges in their OCS-based networks, namely, the complex control mechanism and cabling problems. To solve these challenges, we propose TIO, a hybrid DCN that employs Visible Light Communication (VLC) instead of wired OCS design to connect racks. TIO integrates the wireless VLC-based Jellyfish and wired EPS-based Fat Tree seamlessly and combines the opposite and complementary characteristics, including wireless VLC direct connection and wired electrical packet switching, random graph, and Clos topology properties. To further exploit the merits of TIO, we design a hybrid routing scheme and congestion-aware flow scheduling method. Comprehensive evaluations indicate that TIO outperforms the Jellyfish and Fat Tree in both topology properties and network performance, and the flow scheduling method also evidently improves performance.


menu
Abstract
Full text
Outline
About this article

TIO: A VLC-Enabled Hybrid Data Center Network Architecture

Show Author's information Yudong QinDeke Guo( )Guoming TangBangbang Ren
Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha 410073, China.

Abstract

To satisfy the ever-increasing bandwidth demand of modern data centers, researchers have proposed hybrid Data Center Networks (DCNs), which employ high-bandwidth Optical Circuit Switches (OCSs) to compensate for Electrical Packet Switches (EPS). Existing designs, such as Helios and c-Through, mainly focus on reconfiguring optical devices to meet the estimated traffic requirements. However, these designs face two major challenges in their OCS-based networks, namely, the complex control mechanism and cabling problems. To solve these challenges, we propose TIO, a hybrid DCN that employs Visible Light Communication (VLC) instead of wired OCS design to connect racks. TIO integrates the wireless VLC-based Jellyfish and wired EPS-based Fat Tree seamlessly and combines the opposite and complementary characteristics, including wireless VLC direct connection and wired electrical packet switching, random graph, and Clos topology properties. To further exploit the merits of TIO, we design a hybrid routing scheme and congestion-aware flow scheduling method. Comprehensive evaluations indicate that TIO outperforms the Jellyfish and Fat Tree in both topology properties and network performance, and the flow scheduling method also evidently improves performance.

Keywords: Data Center Network (DCN), topology design, visible light communication, wireless links

References(27)

[1]
D. K., Guo J. J., Xie X. L., Zhou X. M., Zhu W. Wei, and X. S. Luo, Exploiting efficient and scalable shuffle transfers in future data center networks, IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 997-1009, 2015.
[2]
A., Singh J., Ong A., Agarwal G., Anderson A., Armistead R., Bannon S., Boving G., Desai B., Felderman P., Germano et al., Jupiter rising: A decade of clos topologies and centralized control in Google’s datacenter network, ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 183-197, 2015.
[3]
N., Farrington G., Porter S., Radhakrishnan H. H., Bazzaz V., Subramanya Y., Fainman G. Papen, and A. Vahdat, Helios: A hybrid electrical/optical switch architecture for modular data centers, ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 339-350, 2010.
[4]
G. H., Wang D. G., Andersen M., Kaminsky K., Papagiannaki T. S. E., Ng M. Kozuch, and M. Ryan, c-Through: Part-time optics in data centers, ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 327-338, 2010.
[5]
W. M., Mellette R., McGuinness A., Roy A., Forencich G., Papen A. C. Snoeren, and G. Porter, RotorNet: A scalable, low-complexity, optical datacenter network, in Proc. Conf. of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 2017, pp. 267-280.
[6]
H. H., Bazzaz M., Tewari G. H., Wang G., Porter T. S. E., Ng D. G., Andersen M., Kaminsky M. A. Kozuch, and A. Vahdat, Switching the optical divide: Fundamental challenges for hybrid electrical/optical datacenter networks, in Proc. 2nd ACM Symp. on Cloud Computing, Cascais, Portugal, 2011, p. 30.
[7]
K., Ranachandran R., Kokku R. Mahindra, and S. Rangarajan, 60 GHz data-center networking: Wireless Worry less? https://www.researchgate.net/publication/260388834_60_GHz_Data-Center_Networking_Wireless_Worry_less, 2008.
[8]
A. S., Hamza J. S. Deogun, and D. R. Alexander, Wireless communication in data centers: A survey, IEEE Commun. Surv. Tutor., vol. 18, no. 3, pp. 1572-1595, 2016.
[9]
A. S., Hamza S., Yadav S., Ketan J. S. Deogun, and D. R. Alexander, OWCell: Optical wireless cellular data center network architecture, in Proc. 2007 IEEE Int. Conf. on Communications, Paris, France, 2017, pp. 1-6.
[10]
N., Hamedazimi Z., Qazi H., Gupta V., Sekar S. R., Das J. P., Longtin H. Shah, and A. Tanwer, Firefly: A reconfigurable wireless data center fabric using free-space optics, ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 319-330, 2014.
[11]
M., Ghobadi R., Mahajan A., Phanishayee N., Devanur J., Kulkarni G., Ranade P. A., Blanche H., Rastegarfar M. Glick, and D. Kilper, ProjecToR: Agile reconfigurable data center interconnect, in Proc. 2016 ACM SIGCOMM Conf., Florianopolis, Brazil, 2016, pp. 216-229.
[12]
A. Singla, Designing data center networks for high throughput, PhD dissertation, University of Illinois, Champaign, IL, USA, 2015.
[13]
A., Singla C. Y., Hong L. Popa, and P. B. Godfrey, Jellyfish: Networking data centers randomly, in Proc. 9th USENIX Conf. on Networked Systems Design and Implementation, San Jose, CA, USA, 2012, p. 17.
[14]
L., Chen K., Chen Z. H., Zhu M. L., Yu G., Porter C. M. Qiao, and S. Zhong, Enabling wide-spread communications on optical fabric with megaswitch, in Proc. 14th ACM/USENIX Symp. on Networked Systems Design and Implementation, Boston, MA, USA, 2017, pp. 577-593.
[15]
Y. T., Xia X. S., Sun S., Dzinamarira D. M., Wu X. S. Huang, and T. S. E. Ng, A tale of two topologies: Exploring convertible data center network architectures with flat-tree, in Proc. Conf. of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 2017, pp. 295-308.
[16]
S. Louvros and D. Fuschelberger, VLC technology for indoor lte planning, in System-Level Design Methodologies for Telecommunication, N., Sklavos M., Hübner D. Goehringer, and P. Kitsos, eds. Springer, 2014, pp. 21-41.
DOI
[17]
L. L., Luo D. K., Guo J., Wu T., Qu T. Chen, and X. S. Luo, VLCcube: A VLC enabled hybrid network structure for data centers, IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7, pp. 2088-2102, 2017.
[18]
A., Roy H. Y., Zeng J., Bagga G. Porter, and A. C. Snoeren, Inside the social network’s (datacenter) network, ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 123-137, 2015.
[19]
L., Popa S., Ratnasamy G., Iannaccone A. Krishnamurthy, and I. Stoica, A cost comparison of datacenter network architectures, in Proc. 6th Int. Conf., Philadelphia, PA, USA, 2010, p. 16.
[20]
S. Vijay and K. Geetha, A survey on visible light communication appliances used in inter-vehicular and indoor communication, Int. J. Appl. Eng. Res., vol. 11, no. 7, pp. 4893-4897, 2016.
[21]
Y., Cui S. H., Xiao X., Wang Z. J., Yang C., Zhu X. Y., Li L. Yang, and N. Ge, Diamond: Nesting the data center network with wireless rings in 3D space, in Proc. 13th Usenix Conf. on Networked Systems Design and Implementation, Santa Clara, CA, USA, 2016, pp. 657-669.
[22]
M., Al-Fares A. Loukissas, and A., Vahdat A scalable, commodity data center network architecture, ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 63-74, 2008.
[23]
M., Alizadeh A., Greenberg D. A., Maltz J., Padhye P., Patel B., Prabhakar S. Sengupta, and M. Sridharan, Dctcp: Efficient packet transport for the commoditized data center, in Proc. ACM SIGCOMM, New Delhi, India, 2010.
[24]
R., Mittal V. T., Lam N., Dukkipati E., Blem H., Wassel M., Ghobadi A., Vahdat Y. G., Wang D. Wetherall, and D. Zats, TIMELY: RTT-based congestion control for the datacenter, ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 537-550, 2015.
[25]
J. M., Camara M., Moreto E., Vallejo R., Beivide J., Miguel-Alonso C. Martinez, and J. Navaridas, Twisted torus topologies for enhanced interconnection networks, IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 12, pp. 1765-1778, 2010.
[26]
Y. D., Qin D. K., Guo L. L., Luo G. Y. Cheng, and Z. L. Ding, Design and optimization of VLC based small-world data centers, Front. Comput. Sci., .
[27]
D. K., Guo J., Wu Y. H., Liu H., Jin H. H. Chen, and T. Chen, Quasi-Kautz digraphs for peer-to-peer networks, IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 6, pp. 1042-1055, 2011.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 January 2018
Revised: 10 March 2018
Accepted: 14 March 2018
Published: 07 March 2019
Issue date: August 2019

Copyright

© The author(s) 2019

Acknowledgements

This work was partially supported by the National Natural Science Foundation for Outstanding Excellent Young Scholars of China (No. 61422214), the National Natural Science Foundation of China (No. 61772544), the National Key Basic Research and Development (973) Program of China (No. 2014CB347800), the Hunan Provincial Natural Science Fund for Distinguished Young Scholars (No. 2016JJ1002), the Guangxi Cooperative Innovation Center of Cloud Computing and Big Data (Nos. YD16507 and YD17X11), and the NUDT Research Plan (No. ZK17-03-50).

Rights and permissions

Return