Journal Home > Volume 24 , Issue 1

A novel lateral Ge /Si avalanche photodiode without a charge region is investigated herein using device physical simulation. High field is provided by the band-gap barrier and build-in field at the Ge /Si interface in the vertical direction. Modulating the Si mesa thickness ( 0-0.4μm) and impurity concentration of the intrinsic Si substrate ( 1×1016-4×1016cm-3) strengthens the electric field confinement in the substrate region and provides a high avalanche multiplication in the Si region. When the Si mesa thickness is 0.3μm, and the impurity concentration of the Si substrate is 2×1016cm-3, the Lateral Avalanche PhotoDiode (LAPD) exhibits a peak gain of 246 under 1.55μm incident light power of -22.2dBm, which increases with decreasing light intensity.


menu
Abstract
Full text
Outline
About this article

Interface Electric Field Confinement Effect of High-Sensitivity Lateral Ge/Si Avalanche Photodiodes

Show Author's information Wenzhou WuZhi LiuJun ZhengYuhua ZuoBuwen Cheng( )
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

Abstract

A novel lateral Ge /Si avalanche photodiode without a charge region is investigated herein using device physical simulation. High field is provided by the band-gap barrier and build-in field at the Ge /Si interface in the vertical direction. Modulating the Si mesa thickness ( 0-0.4μm) and impurity concentration of the intrinsic Si substrate ( 1×1016-4×1016cm-3) strengthens the electric field confinement in the substrate region and provides a high avalanche multiplication in the Si region. When the Si mesa thickness is 0.3μm, and the impurity concentration of the Si substrate is 2×1016cm-3, the Lateral Avalanche PhotoDiode (LAPD) exhibits a peak gain of 246 under 1.55μm incident light power of -22.2dBm, which increases with decreasing light intensity.

Keywords: avalanche photodiodes, lateral structure, electric field confinement, high gain

References(20)

[1]
Ke S. Y., Lin S. M., Li X., Li J., Xu J. F., Li C., and Chen S., Voltage sharing effect and interface state calculation of a wafer-bonding Ge/Si avalanche photodiode with an interfacial GeO2 insulator layer, Opt. Express, vol. 24, no. 3, pp. 1943-1952, 2016.
[2]
Dong Y., Wang W., Lee S. Y., Lei D., Gong X., Loke W. K., Yoon S. F., Liang G., and Yeo Y. C., Avalanche photodiode featuring germanium-tin multiple quantum wells on silicon: Extending photodetction to wavelengths of 2μm and beyond, in 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.
DOI
[3]
Xu J., Chen X. S., Wang W. J., and Lu W., Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes, Infrared Physics & Technology, vol. 76, pp. 468-473, 2016.
[4]
Zhu S. Y., Ang K. W., Rustagi S. C., Wang J., Xiong Y. Z., Lo G. Q., and Kwong D. L., Wave-guided Ge/Si avalanche photodiode with separate vertical SEG-Ge absorption, lateral Si charge, and multiplication configuration, IEEE Electron Device Lett., vol. 30, no. 9, pp. 934-936, 2009.
[5]
Huang Z. H., Liang D., Santori C., Fiorentino M., Li C., and Beausoleil R. G., Low-voltage Si/Ge avalanche photodiode, in 2015 IEEE 12th International Conference on Group IV Photonics (GFP), Vancouver, Canada, 2015.
DOI
[6]
Lee C. A., Logan R. A., Batdorf R. L., Kieimack J. J., and Wiegmann W., Ionization rates of holes and electrons in silicon, Phys. Rev., vol. 134, no. 3A, pp. A761-A773, 1964.
[7]
McIntyre R. J., The distribution of gains in uniformly multiplying avalanche photodiodes: Theory, IEEE Trans. Electron., pp. 703–713, 1972.
DOI
[8]
Huang Z. H., Li C., Liang D., Yu K. Z., Santori C., Fiorentino M., Sorin W., Palermo S., and Beausoleil R. G., A 25 Gbps low-voltage waveguide Si-Ge avalanche photodiode, in Conference on Lasers and Electro-Optics, 2016 OSA Technical Digest Series (Optical Society of America, 2016), San Jose, CA, USA, 2016.
DOI
[9]
Kang Y., Liu H., Morse M., Paniccia M. J., Zadka M., Litski S., Sarid G., Pauchard A., Kuo Y. H., and Chen H. W., et al., Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product, Nat. Photon., vol. 3, pp. 59-63, 2009.
[10]
Duan N., Liow T. Y., Lim A. E., Ding L., and Lo G. Q., 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection, Opt. Express, vol. 20, no. 10, pp. 11031-11036, 2012.
[11]
Abou El-Ela F. M. and Hamada I. M., Impact ionization coefficients of electron and hole at very high fields in semiconductors, in Modern Trends in Physics Research, 2005 American Institute of Physics (AIP) Conference Proceedings, Cairo, Egypt, 2004.
DOI
[12]
Maes W., Meyer K. D., and Overstraeten V., Impact ionization in silicon: A review and update, Solid State Electron., vol. 33, no. 6, pp. 705-718, 1990.
[13]
Bowers H. C., Space-charge-induced negative resistance in avalanche diodes, IEEE Trans. Electron. Dev., vol. 15, no. 6, pp. 343-350, 1968.
[14]
Jamil E., Hayat M. M., Davids P. S., and Camacho R. M., 3D avalanche multiplication in Si-Ge lateral avalanche photodiodes, in Advanced Photon Counting Techniques X, 2016 Proceedings of SPIE, Baltimore, ML, USA, 2016.
DOI
[15]
Hartmann J. M., Fabbri J.M., Rolland G., Papon A. M., Billon T., Juhel M., and Halimaoui A., In-situ HCl etching and selective epitaxial growth of Boron-doped Ge for the formation of recessed and raised sources and drains, Electrochem. Soc. Trans., vol. 3, no. 7, pp. 489-500, 2006.
[16]
Irvin J. C., Resistivity of bulk silicon and of diffused layers in silicon, Bell Labs Tech. J., vol. 41, no. 2, pp. 387-410, 1962.
[17]
Shah V. A., Dobbie A., Myronov M., and Leadley D. R., Effect of layer thickness on structural quality of Ge epilayers grown directly on Si (001), Thin Solid Films, vol. 519, no. 22, pp. 7911-7917, 2011.
[18]
Kim H. U. and Rhee S. W., Electrical properties of bulk silicon dioxide and SiO2/Si interface formed by tetraethylorthosilicate-ozone chemical vapor deposition, J. Electrochem. Soc., vol. 147, no. 4, pp. 1473-1476, 1999.
[19]
Yablonovitch E., Allara D. L., Chang C. C., Gmitter T., and Bright T. B., Unusually low surface-recombination velocity on silicon and germanium surfaces, Phys. Rev. Lett., vol. 57, no. 2, pp. 249-252, 1986.
[20]
Cong H., Xue C. L., Liu Z., Li C. B., Cheng B. W., and Wang Q. M., High-speed waveguide-integrated Ge/Si avalanche photodetector, Chin. Phys. B, vol. 25, no. 5, p. 052803, 2016.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 March 2017
Revised: 22 March 2017
Accepted: 23 March 2017
Published: 08 November 2018
Issue date: February 2019

Copyright

© The author(s) 2019

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61534005) and Natural Science Foundation of Beijing Municipality (No. 4162063).

Rights and permissions

Return