Journal Home > Volume 3 , Issue 4

The ten-eleven translocation 2 (Tet2) protein, a member of the Tet family, acts as an α-ketoglutarate- and Fe2+-dependent dioxygenase that catalyzes the iterative oxidation of 5-methylcytosine. Tet2 is widely recognized for its involvement in diverse physiological and pathological processes. Herein, we focused on Tet2 changes in stress-related disease models, behavioral changes in response to mutant forms of Tet2, and potential mechanisms underlying the involvement of Tet2 in psychiatric symptoms. This information can contribute to the comprehensive understanding of the role of Tet2 in stress-related disorders and its potential as a therapeutic target.


menu
Abstract
Full text
Outline
About this article

Tet2-mediated responses to environmental stress

Show Author's information Woo Seok Song1Meiling Xia1( )
Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea

Abstract

The ten-eleven translocation 2 (Tet2) protein, a member of the Tet family, acts as an α-ketoglutarate- and Fe2+-dependent dioxygenase that catalyzes the iterative oxidation of 5-methylcytosine. Tet2 is widely recognized for its involvement in diverse physiological and pathological processes. Herein, we focused on Tet2 changes in stress-related disease models, behavioral changes in response to mutant forms of Tet2, and potential mechanisms underlying the involvement of Tet2 in psychiatric symptoms. This information can contribute to the comprehensive understanding of the role of Tet2 in stress-related disorders and its potential as a therapeutic target.

Keywords: stress, epigenetics, psychiatric disorders, ten-eleven translocation 2

References(79)

[1]
Chiriţă, A. L., Gheorman, V., Bondari, D., Rogoveanu, I. Current understanding of the neurobiology of major depressive disorder. Rom J Morphol Embryol, 2015, 56(2 suppl): 651–658.
[2]
Friedrich, M. J. Depression is the leading cause of disability around the world. JAMA, 2017, 317(15): 1517.
[3]
Mathers, C. D., Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 2006, 3(11): e442.
[4]
Weintraub, D., Aarsland, D., Chaudhuri, K. R., Dobkin, R. D., Leentjens, A. F., Rodriguez-Violante, M., Schrag, A. The neuropsychiatry of Parkinson’s disease: Advances and challenges. The Lancet Neurology, 2022, 21(1): 89–102.
[5]
Kim, B., Noh, G. O., Kim, K. Behavioural and psychological symptoms of dementia in patients with Alzheimer’s disease and family caregiver burden: A path analysis. BMC Geriatrics, 2021, 21(1): 160.
[6]
Schou, T. M., Joca, S., Wegener, G., Bay-Richter, C. Psychiatric and neuropsychiatric sequelae of COVID-19–A systematic review. Brain, Behavior, and Immunity, 2021, 97: 328–348.
[7]
Samuels, D. V., Rosenthal, R., Lin, R., Chaudhari, S., Natsuaki, M. N. Acne vulgaris and risk of depression and anxiety: A meta-analytic review. J Am Acad Dermatol, 2020, 83(2): 532–541.
[8]
Peixoto, P., Cartron, P. F., Serandour, A. A., Hervouet, E. From 1957 to nowadays: A brief history of epigenetics. Int J Mol Sci, 2020, 21(20): E7571.
[9]
Jones, P. A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 2012, 13(7): 484–492.
[10]
Tahiliani, M., Koh, K. P., Shen, Y. H., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (New York, N Y), 2009, 324(5929): 930–935.
[11]
He, Y. F., Li, B. Z., Li, Z., Liu, P., Wang, Y., Tang, Q. Y., Ding, J. P., Jia, Y. Y., Chen, Z. C., Li, L. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 2011, 333(6047): 1303–1307.
[12]
Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 2011, 333(6047): 1300–1303.
[13]
Quivoron, C., Couronné, L., Della Valle, V., Lopez, C. K., Plo, I., Wagner-Ballon, O., Do Cruzeiro, M., Delhommeau, F., Arnulf, B., Stern, M. H. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell, 2011, 20(1): 25–38.
[14]
Iyer, L. M., Abhiman, S., Aravind, L. Natural history of eukaryotic DNA methylation systems. Progress in Molecular Biology and Translational Science, 2011, 101: 25–104.
[15]
Lulu, Hu, . Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation. Cell, 2013, 155(7): 1545–1555.
[16]
Fu, L., Guerrero, C. R., Zhong, N., Amato, N. J., Liu, Y., Liu, S., Cai, Q., Ji, D., Jin, S. G., Niedernhofer, L. J. et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc, 2014, 136(33): 11582–11585.
[17]
Delatte, B., Wang, F., Ngoc, L. V., Collignon, E., Bonvin, E., Deplus, R., Calonne, E., Hassabi, B., Putmans, P., Awe, S. et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science, 2016, 351(6270): 282–285.
[18]
Guallar, D., Bi, X. J., Pardavila, J. A., Huang, X., Saenz, C., Shi, X. L., Zhou, H. W., Faiola, F., Ding, J. J., Haruehanroengra, P. et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 2018, 50(3): 443–451.
[19]
Shen, Q. C., Zhang, Q., Shi, Y., Shi, Q. Z., Jiang, Y. Y., Gu, Y., Li, Z. Q., Li, X., Zhao, K., Wang, C. M. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature, 2018, 554(7690): 123–127.
[20]
He, C. S., Bozler, J., Janssen, K. A., Wilusz, J. E., Garcia, B. A., Schorn, A. J., Bonasio, R. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol, 2021, 28(1): 62–70.
[21]
Lemonnier, F., Couronné, L., Parrens, M., Jaïs, J. P., Travert, M., Lamant, L., Tournillac, O., Rousset, T., Fabiani, B., Cairns, R. A. et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood, 2012, 120(7): 1466–1469.
[22]
Gavin, D. P., Sharma, R. P., Chase, K. A., Matrisciano, F., Dong, E., Guidotti, A. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology, 2012, 37(2): 531–542.
[23]
Gross, J. A., Pacis, A., Chen, G. G., Drupals, M., Lutz, P. E., Barreiro, L. B., Turecki, G. Gene-body 5-hydroxymethylation is associated with gene expression changes in the prefrontal cortex of depressed individuals. Translational Psychiatry, 2017, 7(5): e1119.
[24]
Reszka, E., Jabłońska, E., Lesicka, M., Wieczorek, E., Kapelski, P., Szczepankiewicz, A., Pawlak, J., Dmitrzak-Węglarz, M. An altered global DNA methylation status in women with depression. J Psychiatr Res, 2021, 137: 283–289.
[25]
Bukowska, B., Woźniak, E., Sicińska, P., Mokra, K., Michałowicz, J. Glyphosate disturbs various epigenetic processes in vitro and in vivo - A mini review. Sci Total Environ, 2022, 851(Pt 2): 158259.
[26]
Kostyuk, S. V., Ershova, E. S., Martynov, A. V., Artyushin, A. V., Porokhovnik, L. N., Malinovskaya, E. M., Jestkova, E. M., Zakharova, N. V., Kostyuk, G. P., Izhevskaia, V. L. et al. In vitro analysis of biological activity of circulating cell-free DNA isolated from blood plasma of schizophrenic patients and healthy controls—Part 2: Adaptive response. Genes, 2022, 13(12): 2283.
[27]
Teksin, G., Sahpolat, M., Kurhan, F., Sesliokuyucu, C., Bayazit, H., . Decreased nesfatin-1 level in overweight depressed patients. Psychiatria Danubina, 2022, 34(4): 682–686.
[28]
Chen, Y. C., Hsu, P. Y., Su, M. C., Chen, T. W., Hsiao, C. C., Chin, C. H., Liou, C. W., Wang, P. W., Wang, T. Y., Lin, Y. Y. et al. microRNA sequencing analysis in obstructive sleep apnea and depression: Anti-oxidant and MAOA-inhibiting effects of miR-15b-5p and miR-92b-3p through targeting PTGS1-NF-κB-SP1 signaling. Antioxidants, 2021, 10(11): 1854.
[29]
Santos, R., Linker, S. B., Stern, S., Mendes, A. P. D., Shokhirev, M. N., Erikson, G., Randolph-Moore, L., Racha, V., Kim, Y., Kelsoe, J. R. et al. Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Molecular Psychiatry, 2021, 26(6): 2440–2456.
[30]
Schneider, M. O., Pretscher, J., Goecke, T. W., Häberle, L., Engel, A., Kornhuber, J., Eichler, A., Ekici, A. B., Beckmann, M. W., Fasching, P. A. et al. Genetic variants in the genes of the sex steroid hormone metabolism and depressive symptoms during and after pregnancy. Arch Gynecol Obstet, 2023, 307(6): 1763–1770.
[31]
Luo, X. J., Zhang, C. Down-regulation ofSIRT1Gene expression in major depressive disorder. Am J Psychiatry, 2016, 173(10): 1046.
[32]
Gozdziejewski, A. S., Zotti, C. W., de Carvalho, I. A. M., dos Santos, T. C., de Santi Walter, L. R., Ogradowski, K. R. P., Dammski, K. L., Komechen, H., Mendes, M. C., de Souza, E. N. et al. Psychological impact of TP53-variant-carrier newborns and counselling on mothers: A pediatric surveillance cohort. Cancers, 2022, 14(12): 2945.
[33]
Ji, F., Wang, W. W., Feng, C., Gao, F., Jiao, J. W. Brain-specific Wt1 deletion leads to depressive-like behaviors in mice via the recruitment of Tet2 to modulate Epo expression. Molecular Psychiatry, 2021, 26(8): 4221–4233.
[34]
McGrory, C. L., Ryan, K. M., Kolshus, E., McLoughlin, D. M. Peripheral blood E2F1 mRNA in depression and following electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 89: 380–385.
[35]
Lu, J., Jin, K., Jiao, J. P., Liu, R. P., Mou, T. T., Chen, B., Zhang, Z. H., Jiang, C. N., Zhao, H. Y., Wang, Z. et al. YY1 (Yin-Yang 1), a transcription factor regulating systemic inflammation, is involved in cognitive impairment of depression. Psychiatry Clin Neurosci. 2023;77(3):149-159.
[36]
Ma, M. X., Chang, X., Wu, H. T. Animal models of stress and stress-related neurocircuits: A comprehensive review. Stress and Brain, 2021, 1(2): 108–127.
[37]
Zhang, Q., Hu, Q. C., Wang, J. J., Miao, Z. G., Li, Z. Y., Zhao, Y. W., Wan, B., Allen, E. G., Sun, M., Jin, P. et al. Stress modulates Ahi1-dependent nuclear localization of ten-eleven translocation protein 2. Human Molecular Genetics, 2021, 30(22): 2149–2160.
[38]
Robinson R. G. Poststroke depression: Prevalence, diagnosis, treatment, and disease progression. Biological Psychiatry, 2003, 54(3): 376–387.
[39]
Morris, P. L., Robinson, R. G., Andrzejewski, P., Samuels, J., Price, T. R. Association of depression with 10-year poststroke mortality. Am J Psychiatry, 1993, 150(1): 124–129.
[40]
Wei, X., Yu, L., Zhang, Y., Li, X., Wu, H., Jiang, J., Qing, Y., Miao, Z., Fang, Q. The role of Tet2-mediated hydroxymethylation in poststroke depression. Neuroscience, 2021, 461: 118–129.
[41]
Matrisciano, F., Pinna, G. PPAR-α hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior. Int J Mol Sci, 2021, 22(19): 10678.
[42]
Cheng, Y., Sun, M., Chen, L., Li, Y., Lin, L., Yao, B., Li, Z., Wang, Z., Chen, J., Miao, Z. et al. Ten-eleven translocation proteins modulate the response to environmental stress in mice. Cell Rep, 2018, 25(11): 3194–3203.e4.
[43]
Li, X. K., Yao, B., Chen, L., Kang, Y., Li, Y. J., Cheng, Y., Li, L. P., Lin, L., Wang, Z. Q., Wang, M. L. et al. Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis. Nat Commun, 2017, 8: 15903.
[44]
Licznerski, P., Duman, R. S. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience, 2013, 251: 33–50.
[45]
Linden, D. J., Smeyne, M., Connor, J. A. Induction of cerebellar long-term depression in culture requires postsynaptic action of Sodium Ions. Neuron, 1993, 11(6): 1093–1100.
[46]
Murrough, J. W., Abdallah, C. G., Mathew, S. J. Targeting glutamate signalling in depression: Progress and prospects. Nat Rev Drug Discov, 2017, 16(7): 472–486.
[47]
Song, C. X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C. Q., Li, X. K., Li, Y. J., Chen, C. H., Zhang, W., Jian, X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 2011, 29(1): 68–72.
[48]
Hu, J., Cao, S., Zhang, Z., Wang, L., Wang, D., Wu, Q., Li, L. Effects of caffeic acid on epigenetics in the brain of rats with chronic unpredictable mild stress. Mol Med Rep, 2020, 22(6): 5358–5368.
[49]
Wang, Y. F., Liu, B. B., Yang, Y., Wang, Y. M., Zhao, Z., Miao, Z. G., Zhu, J. T. Metformin exerts antidepressant effects by regulated DNA hydroxymethylation. Epigenomics, 2019, 11(6): 655–667.
[50]
Nesbit, N., Wallace, R., Harihar, S., Zhou, M., Jung, J. Y., Silberstein, M., Lee, P. H. Genomewide alteration of histone H3K4 methylation underlies genetic vulnerability to psychopathology. J Genet, 2021, 100(2): 1–10.
[51]
Fang, W. T., Zhang, J., Hong, L. Y., Huang, W. B., Dai, X. M., Ye, Q. Y., Chen, X. C. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord, 2020, 260: 302–313.
[52]
Hu, Y., Zhao, M., Zhao, T., Qi, M. M., Yao, G. D., Dong, Y. The protective effect of pilose antler peptide on CUMS-induced depression through AMPK/Sirt1/NF-κB/NLRP3-mediated pyroptosis. Frontiers in Pharmacology, 2022, 13: 815413.
[53]
Fiedler, E. C., Shaw, R. J. AMPK regulates the epigenome through phosphorylation of TET2. Cell Metabolism, 2018, 28(4): 534–536.
[54]
Kundu, A., Shelar, S., Ghosh, A. P., Ballestas, M., Kirkman, R., Nam, H., Brinkley, G. J., Karki, S., Mobley, J. A., Bae, S. et al. 14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation. J Biol Chem, 2020, 295(6): 1754–1766.
[55]
Xia, M. L., Yan, R., Wang, W. J., Kong, A. Q., Zhang, M., Miao, Z., Ge, W., Wan, B., Xu, X. S. The Tet2–Upf1 complex modulates mRNA stability under stress conditions. Front Genet. 2023;14:1158954.
[56]
Joshi, K., Liu, S. H., Breslin S J, P., Zhang, J. W. Mechanisms that regulate the activities of TET proteins. Cellular and Molecular Life Sciences, 2022, 79(7): 363.
[57]
Weigelt, K., Carvalho, L. A., Drexhage, R. C., Wijkhuijs, A., Wit, H. D., van Beveren, N. J. M., Birkenhäger, T. K., Bergink, V., Drexhage, H. A. TREM-1 and DAP12 expression in monocytes of patients with severe psychiatric disorders. EGR3, ATF3 and PU.1 as important transcription factors. Brain, Behavior, and Immunity, 2011, 25(6): 1162–1169.
[58]
Wang, L., Li, M., Zhu, C. P., Qin, A. P., Wang, J. C., Wei, X. N. The protective effect of Palmatine on depressive like behavior by modulating microglia polarization in LPS-induced mice. Neurochemical Research, 2022, 47(10): 3178–3191.
[59]
Demin, K. A., Krotova, N. A., Ilyin, N. P., Galstyan, D. S., Kolesnikova, T. O., Strekalova, T., de Abreu, M. S., Petersen, E. V., Zabegalov, K. N., Kalueff, A. V. Evolutionarily conserved gene expression patterns for affective disorders revealedusing cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep, 2022, 12: 20836.
[60]
Wille, A., Amort, T., Singewald, N., Sartori, S. B., Lusser, A. Dysregulation of select ATP-dependent chromatin remodeling factors in high trait anxiety. Behavioural Brain Research, 2016, 311: 141–146.
[61]
Sasayama, D., Hiraishi, A., Tatsumi, M., Kamijima, K., Ikeda, M., Umene-Nakano, W., Yoshimura, R., Nakamura, J., Iwata, N., Kunugi, H. Possible association of CUX1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenomics J, 2013, 13(4): 354–358.
[62]
Zambello, E., Zanetti, L., Hédou, G. F., Angelici, O., Arban, R., Tasan, R. O., Sperk, G., Caberlotto, L. Neuropeptide Y-Y2 receptor knockout mice: Influence of genetic background on anxiety-related behaviors. Neuroscience, 2011, 176: 420–430.
[63]
Mulligan, M. K., Dubose, C., Yue, J. M., Miles, M. F., Lu, L., Hamre, K. M. Expression, covariation, and genetic regulation of miRNA Biogenesis genes in brain supports their role in addiction, psychiatric disorders, and disease. Frontiers in Genetics, 2013, 4: 126.
[64]
Maurice, T., Duclot, F., Meunier, J., Naert, G., Givalois, L., Meffre, J., Célérier, A., Jacquet, C., Copois, V., Mechti, N. et al. Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology, 2008, 33(7): 1584–1602.
[65]
Li, W. F., Ali, T., Zheng, C. Y., Liu, Z. Z., He, K. W., Shah, F. A., Ren, Q. G., Rahman, S. U., Li, N. N., Yu, Z. J. et al. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation, 2021, 18(1): 38.
[66]
Wang, S. E., Ko, S. Y., Jo, S., Choi, M., Lee, S. H., Jo, H. R., Seo, J. Y., Lee, S. H., Kim, Y. S., Jung, S. J. et al. TRPV1 regulates stress responses through HDAC2. Cell Rep, 2017, 19(2): 401–412.
[67]
Chris, E., Zheng, T. H., Kennedy Nicholas, A., Ferdinando, B., Anderson Carl, A., Loukas, M., Joanne, H., Jingchunzi, S., Suyash, S., Ioan, V. A. et al. Genome-wide analysis of 53, 400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat Genet, 2021, 53(11): 1543–1552.
[68]
Mavros, C. F., Brownstein, C. A., Thyagrajan, R., Genetti, C. A., Tembulkar, S., Graber, K., Murphy, Q., Cabral, K., VanNoy, G. E., Bainbridge, M. et al. De novo variant of TRRAP in a patient with very early onset psychosis in the context of non-verbal learning disability and obsessive-compulsive disorder: A case report. BMC Medical Genetics, 2018, 19(1): 197.
[69]
Cherepanov, S. M., Gerasimenko, M., Yuhi, T., Furuhara, K., Tsuji, C., Yokoyama, S., Nakayama, K. I., Nishiyama, M., Higashida, H. Oxytocin ameliorates impaired social behavior in a Chd8 haploinsufficiency mouse model of autism. BMC Neuroscience, 2021, 22(1): 32.
[70]
Wuchty, S., Myers, A. J., Ramirez-Restrepo, M., Huentelman, M., Richolt, R., Gould, F., Harvey, P. D., Michopolous, V., Steven, J. S., Wingo, A. P. et al. Integration of peripheral transcriptomics, genomics, and interactomics following trauma identifies causal genes for symptoms of post-traumatic stress and major depression. Molecular Psychiatry, 2021, 26(7): 3077–3092.
[71]
Tunc-Ozcan, E., Peng, C. Y., Zhu, Y. W., Dunlop, S. R., Contractor, A., Kessler, J. A. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nature Commun, 2019, 10(1): 3768.
[72]
Zanos, P., Gould, T. D. Mechanisms of ketamine action as an antidepressant. Molecular Psychiatry, 2018, 23(4): 801–811.
[73]
Zhao, T., Piao, L. H., Li, D. P., Xu, S. H., Wang, S. Y., Yuan, H. B., Zhang, C. X. BDNF gene hydroxymethylation in hippocampus related to neuroinflammation-induced depression-like behaviors in mice. J Affect Disord, 2023, 323: 723–730.
[74]
Antunes, C., da Silva, J. D., Guerra-Gomes, S., Alves, N. D., Ferreira, F., Loureiro-Campos, E., Branco, M. R., Sousa, N., Reik, W., Pinto, L. et al. Tet3 ablation in adult brain neurons increases anxiety-like behavior and regulates cognitive function in mice. Molecular Psychiatry, 2021, 26(5): 1445–1457.
[75]
Greer, C. B., Wright, J., Weiss, J. D., Lazarenko, R. M., Moran, S. P., Zhu, J., Chronister, K. S., Jin, A. Y., Kennedy, A. J., Sweatt, J. D. et al. Tet1 isoforms differentially regulate gene expression, synaptic transmission, and memory in the mammalian brain. J Neurosci, 2021, 41(4): 578–593.
[76]
Jiang, B. C., Ding, T. Y., Guo, C. Y., Bai, X. H., Cao, D. L., Wu, X. B., Sha, W. L., Jiang, M., Wu, L. J., Gao, Y. J. NFAT1 orchestrates spinal microglial transcription and promotes microglial proliferation via c-MYC contributing to nerve injury-induced neuropathic pain. Adv Sci (Weinh), 2022, 9(27): e2201300.
[77]
Pratt, K. J. B., Shea, J. M., Remesal-Gomez, L., Bieri, G., Smith, L. K., Couthouis, J., Chen, C. P., Roy, I. J., Gontier, G., Villeda, S. A. Loss of neuronal Tet2 enhances hippocampal-dependent cognitive function. Cell Rep, 2022, 41(6): 111612.
[78]
Guidotti, A., Grayson, D. R. DNA methylation and demethylation as targets for antipsychotic therapy. Dialogues in Clinical Neuroscience, 2014, 16(3): 419–429.
[79]
Akbarian, S. Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci, 2014, 16(3): 405–417.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 March 2023
Revised: 17 July 2023
Accepted: 18 August 2023
Published: 05 December 2023
Issue date: December 2023

Copyright

© The Author(s) 2023

Acknowledgements

None.

Rights and permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return