Journal Home > Volume 3 , Issue 4

Motor neuron diseases (MND) are a group of rare neurodegenerative diseases that significantly affect the survival of patients. The disease progresses rapidly, and currently, there is no cure for MND. Therefore, delays in MND progression and improvements in the patient’s quality of life have become crucial aspects of clinical work. Stress—a response to environmental or psychological changes—significantly affects body metabolism. In particular, excessive stress can harm the human body. Here, we review recent literature exploring the impact of stress on the progression of MND. This review also discusses the potential mechanisms of stress-induced MND deterioration, including activation of the hypothalamic–pituitary–adrenal axis, abnormal microglial activation, oxidative stress, and the accumulation of stress granules. The role of stress in the pathological changes of MND and the importance of stress management in the treatment of MND have been emphasized. Here, we highlight that the attention of clinicians to this crucial aspect can significantly influence the course and outcome of the disease.


menu
Abstract
Full text
Outline
About this article

The Role of Stress in the Progression of Motor Neuron Disease: Mechanisms and Implications for Treatment

Show Author's information Chenyang Lu1Xingshun Xu1,2,3( )
Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
Institute of Neuroscience, Soochow University, Suzhou 215123, China
Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, Jiangsu, China

Abstract

Motor neuron diseases (MND) are a group of rare neurodegenerative diseases that significantly affect the survival of patients. The disease progresses rapidly, and currently, there is no cure for MND. Therefore, delays in MND progression and improvements in the patient’s quality of life have become crucial aspects of clinical work. Stress—a response to environmental or psychological changes—significantly affects body metabolism. In particular, excessive stress can harm the human body. Here, we review recent literature exploring the impact of stress on the progression of MND. This review also discusses the potential mechanisms of stress-induced MND deterioration, including activation of the hypothalamic–pituitary–adrenal axis, abnormal microglial activation, oxidative stress, and the accumulation of stress granules. The role of stress in the pathological changes of MND and the importance of stress management in the treatment of MND have been emphasized. Here, we highlight that the attention of clinicians to this crucial aspect can significantly influence the course and outcome of the disease.

Keywords: microglia, stress, oxidative stress, environmental factors, MND, HPA

References(154)

[1]
Dharmadasa, T., Matamala, J. M., Huynh, W., Zoing, M. C., Kiernan, M. C. Motor neurone disease. Handbook of Clinical Neurology, 2018, 159: 345–357.
[2]
Foster, L. A., Salajegheh, M. K. Motor neuron disease: Pathophysiology, diagnosis, and management. Am J Med, 2019, 132(1): 32–37.
[3]
Wang, M. D., Little, J., Gomes, J., Cashman, N. R., Krewski, D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. NeuroToxicology, 2017, 61: 101–130.
[4]
Al-Chalabi, A., Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat Rev Neurol, 2013, 9(11): 617–628.
[5]
Szczygielski, J., Mautes, A., Steudel, W. I., Falkai, P., Bayer, T. A., Wirths, O. Traumatic brain injury: Cause or risk of Alzheimer’s disease? A review of experimental studies. J Neural Transm, 2005, 112(11): 1547–1564.
[6]
Goldman, S. M., Tanner, C. M., Oakes, D., Bhudhikanok, G. S., Gupta, A., Langston, J. W. Head injury and Parkinson’s disease risk in twins. Annals of Neurology, 2006, 60(1): 65–72.
[7]
Chen, H., Richard, M., Sandler, D. P., Umbach, D. M., Kamel, F. Head injury and amyotrophic lateral sclerosis. American Journal of Epidemiology, 2007, 166(7): 810–816.
[8]
Kyrou, I., Tsigos, C. Stress hormones: Physiological stress and regulation of metabolism. Current Opinion in Pharmacology, 2009, 9(6): 787–793.
[9]
Chrousos, G. P., Gold, P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9): 1244–1252.
[10]
Yaribeygi, H., Panahi, Y., Sahraei, H., Johnston, T. P., Sahebkar, A. The impact of stress on body function: A review. EXCLI Journal, 2017, 16: 1057–1072.
[11]
Leonard, B. E. The concept of depression as a dysfunction of the immune system. Current Immunology Reviews, 2010, 6(3): 205–212.
[12]
Liu, Y. Z., Wang, Y. X., Jiang, C. L. Inflammation: The common pathway of stress-related diseases. Frontiers in Human Neuroscience, 2017, 11: 316.
[13]
Hardiman, O. Global burden of motor neuron diseases: Mind the gaps. The Lancet Neurology, 2018, 17(12): 1030–1031.
[14]
Chancellor, A. M., Warlow, C. P. Adult onset motor neuron disease: Worldwide mortality, incidence and distribution since 1950. Journal of Neurology, Neurosurgery & Psychiatry, 1992, 55(12): 1106–1115.
[15]
Bäumer, D., Talbot, K., Turner, M. R. Advances in motor neurone disease. J R Soc Med, 2014, 107(1): 14–21.
[16]
Alonso, A., Logroscino, G., Jick, S. S., Hernán, M. A. Incidence and lifetime risk of motor neuron disease in the United Kingdom: A population-based study. Eur J Neurol, 2009, 16(6): 745–751.
[17]
Chiò, A., Logroscino, G., Traynor, B. J., Collins, J., Simeone, J. C., Goldstein, L. A., White, L. A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology, 2013, 41(2): 118–130.
[18]
Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J. P., Deng, H. X. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362(6415): 59–62.
[19]
DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., Nicholson, A. M., Finch, N. A., Flynn, H., Adamson, J. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2): 245–256.
[20]
Alan, E., Renton, A. hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 2011, 72(2): 257–268.
[21]
Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 2008, 319(5870): 1668–1672.
[22]
Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., McConkey, B. J., Velde, C. V., Bouchard, J. P., Lacomblez, L., Pochigaeva, K., Salachas, F. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet, 2008, 40(5): 572–574.
[23]
Kwiatkowski, T. J. Jr, Bosco, D. A., LeClerc, A. L., Tamrazian, E., Vanderburg, C. R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E. J., Munsat, T. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009, 323(5918): 1205–1208.
[24]
Taylor, J. P., Brown, R. H. Jr, Cleveland, D. W. Decoding ALS: From genes to mechanism. Nature, 2016, 539(7628): 197–206.
[25]
Chiò, A., Benzi, G., Dossena, M., Mutani, R., Mora, G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain, 2005, 128(3): 472–476.
[26]
Lehman, E. J., Hein, M. J., Baron, S. L., Gersic, C. M. Neurodegenerative causes of death among retired National Football League players. Neurology, 2012, 79(19): 1970–1974.
[27]
Russell, E. R., Mackay, D. F., Lyall, D., Stewart, K., MacLean, J. A., Robson, J., Pell, J. P., Stewart, W. Neurodegenerative disease risk among former international rugby union players. J Neurol Neurosurg Psychiatry, 2022, 93(12): 1262–1268.
[28]
Gu, D. Q., Ou, S., Tang, M. S., Yin, Z. Y., Wang, Z. G., Liu, G. D. Trauma and amyotrophic lateral sclerosis: A systematic review and meta-analysis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22(3–4): 170–185.
[29]
Liu, G. D., Ou, S., Cui, H. J., Li, X., Yin, Z. Y., Gu, D. Q., Wang, Z. G. Head injury and amyotrophic lateral sclerosis: A meta-analysis. Neuroepidemiology, 2021, 55(1): 11–19.
[30]
Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., Burrell, J. R., Zoing, M. C. Amyotrophic lateral sclerosis. The Lancet, 2011, 377(9769): 942–955.
[31]
Blokhuis, A. M., Groen, E. J., Koppers, M., van den Berg, L. H., Pasterkamp, R. J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 2013, 125(6): 777–794.
[32]
Turner, M. R., Bowser, R., Bruijn, L., Dupuis, L., Ludolph, A., McGrath, M., Manfredi, G., Maragakis, N., Miller, R. G., Pullman, S. L. et al. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14(sup1): 19–32.
[33]
Bäumer, D., Ansorge, O., Almeida, M., Talbot, K. The role of RNA processing in the pathogenesis of motor neuron degeneration. Expert Reviews in Molecular Medicine, 2010, 12: e21.
[34]
Polymenidou, M., Lagier-Tourenne, C., Hutt, K. R., Huelga, S. C., Moran, J., Liang, T. Y., Ling, S. C., Sun, E., Wancewicz, E., Mazur, C. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neuroscience, 2011, 14(4): 459–468.
[35]
Turner, M. R., Goldacre, R., Ramagopalan, S., Talbot, K., Goldacre, M. J. Autoimmune disease preceding amyotrophic lateral sclerosis: An epidemiologic study. Neurology, 2013, 81(14): 1222–1225.
[36]
Goh, X. X., Tang, P. Y., Tee, S. F. 8-hydroxy-2’-deoxyguanosine and reactive oxygen species as biomarkers of oxidative stress in mental illnesses: A meta-analysis. Psychiatry Investigation, 2021, 18(7): 603–618.
[37]
Weera, M. Biobehavioral interactions between stress and alcohol. Alcohol Research: Current Reviews, 2019, 40(1), arcr.v40.1.04.
[38]
Carnevale, R., Sciarretta, S., Violi, F., Nocella, C., Loffredo, L., Perri, L., Peruzzi, M., Marullo, A. G. M., De Falco, E., Chimenti, I. et al. Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest, 2016, 150(3): 606–612.
[39]
Westeneng, H. J., van Veenhuijzen, K., van der Spek, R. A., Peters, S., Visser, A. E., van Rheenen, W., Veldink, J. H., van den Berg, L. H. Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: A longitudinal, population-based, case-control study. The Lancet Neurology, 2021, 20(5): 373–384.
[40]
Anderson, E. N., Gochenaur, L., Singh, A., Grant, R., Patel, K., Watkins, S., Wu, J. Y., Pandey, U. B. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Human Molecular Genetics, 2018, 27(8): 1366–1381.
[41]
Chen, G. X., Douwes, J., den Berg, L. H., Glass, B., McLean, D., ’t Mannetje, A. M. Sports and trauma as risk factors for Motor Neurone Disease: New Zealand case–control study. Acta Neurologica Scandinavica, 2022, 145(6): 770–785.
[42]
Averill, A. J., Kasarskis, E. J., Segerstrom, S. C. Expressive disclosure to improve well-being in patients with amyotrophic lateral sclerosis: A randomised, controlled trial. Psychology & Health, 2013, 28(6): 701–713.
[43]
Marconi, A., Gragnano, G., Lunetta, C., Gatto, R., Fabiani, V., Tagliaferri, A., Rossi, G., Sansone, V., Pagnini, F. The experience of meditation for people with amyotrophic lateral sclerosis and their caregivers - a qualitative analysis. Psychology, Health & Medicine, 2016, 21(6): 762–768.
[44]
Bongioanni, P., Del Carratore, R., Corbianco, S., Diana, A., Cavallini, G., Masciandaro, S. M., Dini, M., Buizza, R. Climate change and neurodegenerative diseases. Environmental Research, 2021, 201: 111511.
[45]
Smith, S. M., Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 2006, 8(4): 383–395.
[46]
Madalena, K. M., Lerch, J. K. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plasticity, 2017, 2017: 8640970.
[47]
Myers, B., McKlveen, J. M., Herman, J. P. Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 2014, 35(2): 180–196.
[48]
Nicolaides, N. C., Kyratzi, E., Lamprokostopoulou, A., Chrousos, G. P., Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation, 2015, 22(1–2): 6–19.
[49]
O'Connor, D. B., Green, J. A., Ferguson, E., O'Carroll, R. E., O'Connor, R. C. Cortisol reactivity and suicidal behavior: Investigating the role of hypothalamic-pituitary-adrenal axis responses to stress in suicide attempters and ideators. Psychoneuroendocrinology, 2017, 75: 183–191.
[50]
Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F., Sousa, N., Sotiropoulos, I. Chronic stress and glucocorticoids: From neuronal plasticity to neurodegeneration. Neural Plasticity, 2016, 2016: 6391686.
[51]
Bisht, K., Sharma, K., Tremblay, M. È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress, 2018, 9: 9–21.
[52]
Frick, L. R., Williams, K., Pittenger, C. Microglial dysregulation in psychiatric disease. Clinical & Developmental Immunology, 2013, 2013: 608654.
[53]
Steiner, J., Bielau, H., Brisch, R., Danos, P., Ullrich, O., Mawrin, C., Bernstein, H. G., Bogerts, B. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res, 2008, 42(2): 151–157.
[54]
Réus, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., Kapczinski, F., Quevedo, J. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience, 2015, 300: 141–154.
[55]
Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., Yoshihara, Y., Omata, K., Matsumoto, K., Tsuchiya, K. J. et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry, 2013, 70(1): 49–58.
[56]
Minagawa, K., Yamada, S. I., Suzuki, A., Ta, S., Kumai, T., Lambein, F., Kusama-Eguchi, K. Stress-related over-enhancement of the hypothalamic-pituitary-adrenal axis causes experimental neurolathyrism in rats. Environmental Toxicology and Pharmacology, 2019, 72: 103245.
[57]
Dong, H. X., Csernansky, J. G. Effects of stress and stress hormones on amyloid-beta protein and plaque deposition. J Alzheimers Dis, 2009, 18(2): 459–469.
[58]
Ferri, L., Ajdinaj, P., Rispoli, M. G., Carrarini, C., Barbone, F., D’Ardes, D., Capasso, M., Muzio, A. D., Cipollone, F., Onofrj, M. et al. Diabetes mellitus and amyotrophic lateral sclerosis: A systematic review. Biomolecules, 2021, 11(6): 867.
[59]
Jawaid, A., Salamone, A. R., Strutt, A. M., Murthy, S. B., Wheaton, M., McDowell, E. J., Simpson, E., Appel, S. H., York, M. K., Schulz, P. E. ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur J Neurol, 2010, 17(5): 733–739.
[60]
Kioumourtzoglou, M. A., Rotem, R. S., Seals, R. M., Gredal, O., Hansen, J., Weisskopf, M. G. Diabetes mellitus, obesity, and diagnosis of amyotrophic lateral sclerosis. JAMA Neurology, 2015, 72(8): 905.
[61]
Mariosa, D., Kamel, F., Bellocco, R., Ronnevi L-, O., Almqvist, C., Larsson, H., Ye, W., Fang, F. Antidiabetics, statins and the risk of amyotrophic lateral sclerosis. Eur J Neurol, 2020, 27(6): 1010–1016.
[62]
Zhang, L. J., Chen, L., Fan, D. S. The protective role of pre-morbid type 2 diabetes in patients with amyotrophic lateral sclerosis: A center-based survey in China. Amyotroph Lateral Scler Frontotemporal Degener, 2020, 21(3–4): 209–215.
[63]
Tsai, C. P., Lee, J. K. W., Lee, C. T. C. Type II diabetes mellitus and the incidence of amyotrophic lateral sclerosis. J Neurol, 2019, 266(9): 2233–2243.
[64]
Mariosa, D., Kamel, F., Bellocco, R., Ye, W., Fang, F. Association between diabetes and amyotrophic lateral sclerosis in Sweden. Eur J Neurol, 2015, 22(11): 1436–1442.
[65]
Sun, Y., Lu, C. J., Chen, R. C., Hou, W. H., Li, C. Y. Risk of amyotrophic lateral sclerosis in patients with diabetes: A nationwide population-based cohort study. J Epidemiol, 2015, 25(6): 445–451.
[66]
Zeng, P., Wang, T., Zheng, J. N., Zhou, X. Causal association of type 2 diabetes with amyotrophic lateral sclerosis: New evidence from Mendelian randomization using GWAS summary statistics. BMC Medicine, 2019, 17(1): 225.
[67]
Logroscino, G. Are diabetes and amyotrophic lateral sclerosis related? Nat Rev Neurol, 2015, 11(9): 488–490.
[68]
Beers, D. R., Appel, S. H. Immune dysregulation in amyotrophic lateral sclerosis: Mechanisms and emerging therapies. The Lancet Neurology, 2019, 18(2): 211–220.
[69]
Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M., Greenwood, B. N., Fleshner, M. Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience, 2005, 135(4): 1295–1307.
[70]
Dahan, S. N., Bragazzi, N. L., Yogev, A., Bar-Gad, M., Barak, V., Amital, H., Amital, D. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Research, 2018, 268: 467–472.
[71]
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., Kivimäki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 2015, 49: 206–215.
[72]
Black, C., Miller, B. J. Meta-analysis of cytokines and chemokines in suicidality: Distinguishing suicidal versus nonsuicidal patients. Biological Psychiatry, 2015, 78(1): 28–37.
[73]
Passos, I. C., Vasconcelos-Moreno, M. P., Costa, L. G., Kunz, M., Brietzke, E., Quevedo, J., Salum, G., Magalhães, P. V., Kapczinski, F., Kauer-Sant'Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. The Lancet Psychiatry, 2015, 2(11): 1002–1012.
[74]
AL-Ayadhi, L. Y., Mostafa, G. A. Elevated serum levels of interleukin-17A in children with autism. J Neuroinflammation, 2012, 9(1): 1–6.
[75]
Weber, M. D., Frank, M. G., Tracey, K. J., Watkins, L. R., Maier, S. F. Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: A priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci, 2015, 35(1): 316–324.
[76]
Fleshner, M., Crane, C. R. Exosomes, DAMPs and miRNA: Features of stress physiology and immune homeostasis. Trends in Immunology, 2017, 38(10): 768–776.
[77]
Bogie, J. F. J., Stinissen, P., Hendriks, J. J. A. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathologica, 2014, 128(2): 191–213.
[78]
Kaufmann, F. N., Costa, A. P., Ghisleni, G., Diaz, A. P., Rodrigues, A. L. S., Peluffo, H., Kaster, M. P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain, Behavior, and Immunity, 2017, 64: 367–383.
[79]
Wohleb, E. S., Delpech, J. C. Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 79: 40–48.
[80]
Zhao, W. H., Beers, D. R., Hooten, K. G., Sieglaff, D. H., Zhang, A. J., Kalyana-Sundaram, S., Traini, C. M., Halsey, W. S., Hughes, A. M., Sathe, G. M. et al. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. JAMA Neurology, 2017, 74(6): 677.
[81]
Frakes, A., Ferraiuolo, L., Haidet-Phillips, A., Schmelzer, L., Braun, L., Miranda, C., Ladner, K., Bevan, A., Foust, K., Godbout, J. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron, 2014, 81(5): 1009–1023.
[82]
Protter, D. S. W., Parker, R. Principles and properties of stress granules. Trends in Cell Biology, 2016, 26(9): 668–679.
[83]
Kedersha, N., Ivanov, P., Anderson, P. Stress Granules and cell signaling: More than just a passing phase? Trends in Biochemical Sciences, 2013, 38(10): 494–506.
[84]
Grimaldi, G., Catara, G., Palazzo, L., Corteggio, A., Valente, C., Corda, D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochemical Pharmacology, 2019, 167: 64–75.
[85]
Catara, G., Grimaldi, G., Schembri, L., Spano, D., Turacchio, G., Lo Monte, M., Beccari, A. R., Valente, C., Corda, D. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci Rep, 2017, 7: 14035.
[86]
Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., Takekawa, M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol, 2008, 10(11): 1324–1332.
[87]
Takahara, T., Maeda, T. Transient sequestration of TORC1 into stress granules during heat stress. Molecular Cell, 2012, 47(2): 242–252.
[88]
Wang, J. H., Gan, Y. X., Cao, J., Dong, X. F., Ouyang, W. Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med, 2022, 49(4): 44.
[89]
Hofmann, S., Kedersha, N., Anderson, P., Ivanov, P. Molecular mechanisms of stress granule assembly and disassembly. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1): 118876.
[90]
Shin, Y., Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science, 2017, 357(6357): eaaf4382.
[91]
Matsuki, H., Takahashi, M., Higuchi, M., Makokha, G. N., Oie, M., Fujii, M. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes to Cells, 2013, 18(2): 135–146.
[92]
Yang, P. G., Mathieu, C., Kolaitis, R. M., Zhang, P. P., Messing, J., Yurtsever, U., Yang, Z. M., Wu, J. J., Li, Y. X., Pan, Q. F. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell, 2020, 181(2): 325–345.e28.
[93]
Guillén-Boixet, J., Kopach, A., Holehouse, A. S., Wittmann, S., Jahnel, M., Schlüßler, R., Kim, K., Trussina, I. R. E. A., Wang, J., Mateju, D. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell, 2020, 181(2): 346–361.e17.
[94]
Panas, M. D., Kedersha, N., Schulte, T., Branca, R. M., Ivanov, P., Anderson, P. Phosphorylation of G3BP1-S149 does not influence stress granule assembly. The J Cell Biol, 2019, 218(7): 2425–2432.
[95]
Gwon, Y., Maxwell, B. A., Kolaitis, R. M., Zhang, P. P., Kim, H. J., Taylor, J. P. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science, 2021, 372(6549): eabf6548.
[96]
Youn, J. Y., Dunham, W. H., Hong, S. J., Knight, J. D. R., Bashkurov, M., Chen, G. I., Bagci, H., Rathod, B., MacLeod, G., Eng, S. W. M. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Molecular Cell, 2018, 69(3): 517–532.e11.
[97]
Cirillo, L., Cieren, A., Barbieri, S., Khong, A., Schwager, F., Parker, R., Gotta, M. UBAP2L forms distinct cores that act in nucleating stress granules upstream of G3BP1. Current Biology, 2020, 30(4): 698–707.e6.
[98]
Huang, C. Y., Chen, Y., Dai, H. Q., Zhang, H., Xie, M. Y., Zhang, H. B., Chen, F. L., Kang, X. J., Bai, X. C., Chen, Z. G. UBAP2L arginine methylation by PRMT1 modulates stress granule assembly. Cell Death & Differentiation, 2020, 27(1): 227–241.
[99]
Zhang, P. P., Fan, B. C., Yang, P. G., Temirov, J., Messing, J., Kim, H. J., Taylor, J. P. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife, 2019, 8: e39578.
[100]
Baron, D. M., Kaushansky, L. J., Ward, C. L., Sama, R. R., Chian, Boggio, K. J., Quaresma, A. J., Nickerson, J. A., Bosco, D. A. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Molecular Neurodegeneration, 2013, 8: 30.
[101]
Ratti, A., Gumina, V., Lenzi, P., Bossolasco, P., Fulceri, F., Volpe, C., Bardelli, D., Pregnolato, F., Maraschi, A., Fornai, F. et al. Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-motoneurons. Neurobiology of Disease, 2020, 145: 105051.
[102]
Rodriguez-Ortiz, C. J., Flores, J. C., Valenzuela, J. A., Rodriguez, G. J., Zumkehr, J., Tran, D. N., Kimonis, V. E., Kitazawa, M. The myoblast C2C12 transfected with mutant valosin-containing protein exhibits delayed stress granule resolution on oxidative stress. Am J Pathol, 2016, 186(6): 1623–1634.
[103]
Mediani, L., Antoniani, F., Galli, V., Vinet, J., Carrà, A. D., Bigi, I., Tripathy, V., Tiago, T., Cimino, M., Leo, G. et al. Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Reports, 2021, 22(5): e51740.
[104]
Guo, L., Kim, H. J., Wang, H. J., Monaghan, J., Freyermuth, F., Sung, J. C., O’Donovan, K., Fare, C. M., Diaz, Z., Singh, N. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell, 2018, 173(3): 677–692.e20.
[105]
Brown, D. G., Shorter, J., Wobst, H. J. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorganic & Medicinal Chemistry Letters, 2020, 30(4): 126942.
[106]
Chitiprolu, M., Jagow, C., Tremblay, V., Bondy-Chorney, E., Paris, G., Savard, A., Palidwor, G., Barry, F. A., Zinman, L., Keith, J. et al. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat Commu, 2018, 9: 2794.
[107]
Asadi, M. R., Sadat Moslehian, M., Sabaie, H., Jalaiei, A., Ghafouri-Fard, S., Taheri, M., Rezazadeh, M. Stress Granules and neurodegenerative disorders: A scoping review. Frontiers in Aging Neuroscience, 2021, 13: 650740.
[108]
Zhang, X., Wang, F. C., Hu, Y., Chen, R. Z., Meng, D. W., Guo, L., Lv, H. L., Guan, J. S., Jia, Y. C. In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain, 2020, 143(5): 1350–1367.
[109]
Ratti, A., Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. Journal of Neurochemistry, 2016, 138(Suppl 1): 95–111.
[110]
Liao, Y. Z., Ma, J., Dou, J. Z. The role of TDP-43 in neurodegenerative disease. Molecular Neurobiology, 2022, 59(7): 4223–4241.
[111]
Tziortzouda, P., Van Den Bosch, L., Hirth, F. Triad of TDP43 control in neurodegeneration: Autoregulation, localization and aggregation. Nat Rev Neurosci, 2021, 22(4): 197–208.
[112]
Portz, B., Lee, B. L., Shorter, J. FUS and TDP-43 phases in health and disease. Trends in Biochemical Sciences, 2021, 46(7): 550–563.
[113]
Huang, C. H., Yan, S., Zhang, Z. J. Maintaining the balance of TDP-43, mitochondria, and autophagy: A promising therapeutic strategy for neurodegenerative diseases. Translational Neurodegeneration, 2020, 9(1): 40.
[114]
de Boer, E. M. J., Orie, V. K., Williams, T., Baker, M. R., De Oliveira, H. M., Polvikoski, T., Silsby, M., Menon, P., van den Bos, M., Halliday, G. M. et al. TDP-43 proteinopathies: A new wave of neurodegenerative diseases. J Neurol, Neurosurgery & Psychiatry, 2021, 92(1): 86–95.
[115]
Layalle, S., They, L., Ourghani, S., Raoul, C., Soustelle, L. Amyotrophic lateral sclerosis genes in drosophila melanogaster. Int J Mol Sci, 2021, 22(2): 904.
[116]
Zuo, X. X., Zhou, J., Li, Y. M., Wu, K., Chen, Z. G., Luo, Z. W., Zhang, X. R., Liang, Y., Esteban, M. A., Zhou, Y. et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nature Structural & Molecular Biology, 2021, 28(2): 132–142.
[117]
Gasset-Rosa, F., Lu, S., Yu, H. Y., Chen, C., Melamed, Z., Guo, L., Shorter, J., da Cruz, S., Cleveland, D. W. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron, 2019, 102(2): 339–357.e7.
[118]
Miguel, L., Frébourg, T., Campion, D., Lecourtois, M. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies. Neurobiology of Disease, 2011, 41(2): 398–406.
[119]
McAlary, L., Chew, Y. L., Lum, J. S., Geraghty, N. J., Yerbury, J. J., Cashman, N. R. Amyotrophic lateral sclerosis: Proteins, proteostasis, prions, and promises. Frontiers in Cellular Neuroscience, 2020, 14: 581907.
[120]
Bright, F., Chan, G., van Hummel, A., Ittner, L. M., Ke, Y. D. TDP-43 and inflammation: Implications for amyotrophic lateral sclerosis and frontotemporal dementia. Int J Mol Sci, 2021, 22(15): 7781.
[121]
Correia, A. S., Patel, P., Dutta, K., Julien, J. P. Inflammation induces TDP-43 mislocalization and aggregation. PLoS One, 2015, 10(10): e0140248.
[122]
Lin, M. T., Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113): 787–795.
[123]
Mao, H. Y., Fang, X., Floyd, K. M., Polcz, J. E., Zhang, P., Liu, B. Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin. Brain Research, 2007, 1186: 267–274.
[124]
Baltazar, M. T., Dinis-Oliveira, R. J., de Lourdes Bastos, M., Tsatsakis, A. M., Duarte, J. A., Carvalho, F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases—a mechanistic approach. Toxicology Letters, 2014, 230(2): 85–103.
[125]
Andrew, Churg,. Interactions of exogenous or evoked agents and particles: The role of reactive oxygen species. Free Radical Biology and Medicine, 2003, 34(10): 1230–1235.
[126]
Barber, S. C., Shaw, P. J. Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine, 2010, 48(5): 629–641.
[127]
Iguchi, Y., Katsuno, M., Takagi, S., Ishigaki, S., Niwa, J. I., Hasegawa, M., Tanaka, F., Sobue, G. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiology of Disease, 2012, 45(3): 862–870.
[128]
Annesley, S. J., Fisher, P. R. Mitochondria in health and disease. Cells, 2019, 8(7): 680.
[129]
Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S. et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells, 2022, 11(3): 552.
[130]
Bellezza, I., Giambanco, I., Minelli, A., Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2018, 1865(5): 721–733.
[131]
Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., Biswal, S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 2002, 62(18): 5196–5203.
[132]
Pehar, M., Vargas, M. R., Cassina, P., Barbeito, A. G., Beckman, J. S., Barbeito, L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegenerative Diseases, 2005, 2(3–4): 139–146.
[133]
Kodavati, M., Wang, H. B., Hegde, M. L. Altered mitochondrial dynamics in motor neuron disease: An emerging perspective. Cells, 2020, 9(4): 1065.
[134]
Takuma, K., Yan, S. S., Stern, D. M., Yamada, K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in alzheimer’s disease. J Pharmacol Sci, 2005, 97(3): 312–316.
[135]
Bano, D., Nicotera, P. Ca2+ signals and neuronal death in brain ischemia. Stroke, 2007, 38(2): 674–676.
[136]
Hoyles, L., Snelling, T., Umlai, U. K., Nicholson, J. K., Carding, S. R., Glen, R. C., McArthur, S. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome, 2018, 6(1): 55.
[137]
Wright, M. L., Fournier, C., Houser, M. C., Tansey, M., Glass, J., Hertzberg, V. S. Potential role of the gut microbiome in ALS: A systematic review. Biol Res Nurs, 2018, 20(5): 513–521.
[138]
Foster, J. A., McVey Neufeld, K. A. Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 2013, 36(5): 305–312.
[139]
Wu, S. P., Yi, J. X., Zhang, Y. G., Zhou, J. S., Sun, J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiological Reports, 2015, 3(4): e12356.
[140]
Zhang, Y. G., Wu, S. P., Yi, J. X., Xia, Y. L., Jin, D. P., Zhou, J. S., Sun, J. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clinical Therapeutics, 2017, 39(2): 322–336.
[141]
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., Kleimeyer, C., Moresi, C., Harnik, Y., Zur, M. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019, 572(7770): 474–480.
[142]
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., Dinan, T. G., Cryan, J. F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 2013, 18(6): 666–673.
[143]
Bartanusz, V., Jezova, D., Alajajian, B., Digicaylioglu, M. The blood–spinal cord barrier: Morphology and Clinical Implications. Annals of Neurology, 2011, 70(2): 194–206.
[144]
Kakaroubas, N., Brennan, S., Keon, M., Saksena, N. K. Pathomechanisms of blood-brain barrier disruption in ALS. Neuroscience Journal, 2019, 2019: 2537698.
[145]
Chen, X. S., Gawryluk, J. W., Wagener, J. F., Ghribi, O., Geiger, J. D. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflammation, 2008, 5: 12.
[146]
Bouchat, J., Couturier, B., Marneffe, C., Gankam-Kengne, F., Balau, B., De Swert, K., Brion, J. P., Poncelet, L., Gilloteaux, J., Nicaise, C. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood–brain barrier disruption in a murine model of osmotic demyelination syndrome. Glia, 2018, 66(3): 606–622.
[147]
Obermeier, B., Daneman, R., Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat Med, 2013, 19(12): 1584–1596.
[148]
Lee, S., Kang, B. M., Kim, J. H., Min, J., Kim, H. S., Ryu, H., Park, H., Bae, S., Oh, D., Choi, M. et al. Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep, 2018, 8: 13064.
[149]
Sántha, P., Veszelka, S., Hoyk, Z., Mészáros, M., Walter, F. R., Tóth, A. E., Kiss, L., Kincses, A., Oláh, Z., Seprényi, G. et al. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Frontiers in Molecular Neuroscience, 2016, 8: 88.
[150]
Menard, C., Pfau, M. L., Hodes, G. E., Kana, V., Wang, V. X., Bouchard, S., Takahashi, A., Flanigan, M. E., Aleyasin, H., LeClair, K. B. et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci, 2017, 20(12): 1752–1760.
[151]
Van den Broeck, K., Pieters, G., Claes, L., Berens, A., Raes, F. Overgeneral autobiographical memory predicts higher prospective levels of depressive symptoms and intrusions in borderline patients. Memory, 2016, 24(10): 1302–1310.
[152]
Waters, S., Swanson, M. E. V., Dieriks, B. V., Zhang, Y. B., Grimsey, N. L., Murray, H. C., Turner, C., Waldvogel, H. J., Faull, R. L. M., An, J. Y. et al. Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathologica Communications, 2021, 9(1): 1–17.
[153]
Regan, R. F., Guo, Y. P. Toxic effect of hemoglobin on spinal cord neurons in culture. J Neurotrauma, 1998, 15(8): 645–653.
[154]
Witzel, S., Maier, A., Steinbach, R., Grosskreutz, J., Koch, J. C., Sarikidi, A., Petri, S., Günther, R., Wolf, J., Hermann, A. et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurology, 2022, 79(2): 121–130.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 December 2022
Revised: 23 October 2023
Accepted: 26 October 2023
Published: 05 December 2023
Issue date: December 2023

Copyright

© The Author(s) 2023

Acknowledgements

We thank Songyue Chen for the comments on the content of the article, and we would like to thank all participants who participated in the study for their time and involvement.

Rights and permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return