Journal Home > Volume 2 , Issue 4

Photobiomodulation (PBM), as a form of light therapy, has been applied broadly in the medical practice. The biological photoreceptors use small-molecule cofactors called chromophores to detect light and convert a physical signal into a biochemical signal transmission cascade. Visible light (380–780 nm) can activate specialized photoreceptors to stimulate vision and regulate circadian rhythm. Compared with visible light, near-infrared (NIR) light (780–1,100 nm) has better tissue penetration depths, enabling us to carry out non-invasive low-level laser therapy (LLLT) for different tissues. Mitochondrial cytochrome c oxidase is the main NIR photoreceptor. The basic effect is to promote the generation of ATP through the respiratory chain. LLLT can enhance blood circulation, alleviate inflammation, promote muscle damage repair, stem cell proliferation and so on. The neuroprotective effect of LLLT on central nervous system (CNS) diseases has been preliminarily verified in animal models, which is expected to improve the cognitive function of Alzheimer’s patients, motor symptoms of Parkinson’s patients and mental disorders of patients with depression, thus improving the quality of life of patients. Understanding its protective effect and mechanisms will contribute to better therapeutic application in the future. In this review, we will discuss the antidepressant effect of LLLT, its possible mechanisms, and existing problems with its applications.


menu
Abstract
Full text
Outline
About this article

Recent advances in low-level laser therapy on depression

Show Author's information Shiyao XuBo Wan( )
Institute of Neuroscience, Soochow University, Suzhou 215123, China

Abstract

Photobiomodulation (PBM), as a form of light therapy, has been applied broadly in the medical practice. The biological photoreceptors use small-molecule cofactors called chromophores to detect light and convert a physical signal into a biochemical signal transmission cascade. Visible light (380–780 nm) can activate specialized photoreceptors to stimulate vision and regulate circadian rhythm. Compared with visible light, near-infrared (NIR) light (780–1,100 nm) has better tissue penetration depths, enabling us to carry out non-invasive low-level laser therapy (LLLT) for different tissues. Mitochondrial cytochrome c oxidase is the main NIR photoreceptor. The basic effect is to promote the generation of ATP through the respiratory chain. LLLT can enhance blood circulation, alleviate inflammation, promote muscle damage repair, stem cell proliferation and so on. The neuroprotective effect of LLLT on central nervous system (CNS) diseases has been preliminarily verified in animal models, which is expected to improve the cognitive function of Alzheimer’s patients, motor symptoms of Parkinson’s patients and mental disorders of patients with depression, thus improving the quality of life of patients. Understanding its protective effect and mechanisms will contribute to better therapeutic application in the future. In this review, we will discuss the antidepressant effect of LLLT, its possible mechanisms, and existing problems with its applications.

Keywords: depression, microbiota, neuroprotection, near-infrared (NIR), low-level laser therapy (LLLT), gut–brain, ATP

References(127)

[1]
Saucedo, C. L., Courtois, E. C., Wade, Z. S., Kelley, M. N., Kheradbin, N., Barrett, D. W., Gonzalez-Lima, F. Transcranial laser stimulation: Mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimulation, 2021, 14(2): 440–449.
[2]
dos Santos Cardoso, F., dos Santos, J. C. C., Gonzalez-Lima, F., Araújo, B. H. S., Lopes-Martins, R. Á. B., da Silva, S. G. Effects of chronic photobiomodulation with transcranial near-infrared laser on brain metabolomics of young and aged rats. Molecular Neurobiology, 2021, 58(5): 2256–2268.
[3]
Passarella, S., Karu, T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. Journal of Photochemistry and Photobiology B: Biology, 2014, 140: 344–358.
[4]
Karu, T. N. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of Photochemistry and Photobiology B: Biology, 1999, 49(1): 1–17.
[5]
Golovynska, I., Golovynskyi, S., Stepanov, Y. V., Garmanchuk, L. V., Stepanova, L. I., Qu, J. L., Ohulchanskyy, T. Y. Red and near-infrared light induces intracellular Ca2+ flux via the activation of glutamate N-methyl-D-aspartate receptors. Journal of Cellular Physiology, 2019, 234(9): 15989–16002.
[6]
Cunnane, S. C., Trushina, E., Morland, C., Prigione, A., Casadesus, G., Andrews, Z. B., Beal, M. F., Bergersen, L. H., Brinton, R. D., de la Monte, S. et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2020, 19(9): 609–633.
[7]
Abdallah, C. G., Jiang, L., De Feyter, H. M., Fasula, M., Krystal, J. H., Rothman, D. L., Mason, G. F., Sanacora, G. Glutamate metabolism in major depressive disorder. The American Journal of Psychiatry, 2014, 171(12): 1320–1327.
[8]
Butterfield, D. A., Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews Neuroscience, 2019, 20(3): 148–160.
[9]
Exner, N., Lutz, A. K., Haass, C., Winklhofer, K. F. Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences. The EMBO Journal, 2012, 31(14): 3038–3062.
[10]
Cao, X., Li, L. P., Wang, Q., Wu, Q., Hu, H. H., Zhang, M., Fang, Y. Y., Zhang, J., Li, S. J., Xiong, W. C. et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nature Medicine, 2013, 19(6): 773–777.
[11]
GBD 2017 Disease and Injury Incidence and Prevalence Collaboration. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159): 1789–1858.
[12]
Malhi, G. S., Mann, J. J. Depression. Lancet, 2018, 392(10161): 2299–2312.
[13]
Trivedi, M. H., Rush, A. J., Wisniewski, S. R., Nierenberg, A. A., Warden, D., Ritz, L., Norquist, G., Howland, R. H., Lebowitz, B., McGrath, P. J. et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. The American Journal of Psychiatry, 2006, 163(1): 28–40.
[14]
Shulman, K. I., Herrmann, N., Walker, S. E. Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs, 2013, 27(10): 789–797.
[15]
Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D., Niederehe, G., Thase, M. E., Lavori, P. W., Lebowitz, B. D. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. The American Journal of Psychiatry, 2006, 163(11): 1905–1917.
[16]
Hong, N. Photobiomodulation as a treatment for neurodegenerative disorders: Current and future trends. Biomedical Engineering Letters, 2019, 9(3): 359–366.
[17]
Johnstone, D. M., Moro, C., Stone, J., Benabid, A. L., Mitrofanis, J. Turning on lights to stop neurodegeneration: The potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Frontiers in Neuroscience, 2016, 9: 500.
[18]
Salehpour, F., Mahmoudi, J., Kamari, F., Sadigh-Eteghad, S., Rasta, S. H., Hamblin, M. R. Brain photobiomodulation therapy: A narrative review. Molecular Neurobiology, 2018, 55(8): 6601–6636.
[19]
Wang, W. J., Geiger, J. H., Borhan, B. The photochemical determinants of color vision: Revealing how opsins tune their chromophore’s absorption wavelength. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2014, 36(1): 65–74.
[20]
Kaufmann, J. C. D., Krause, B. S., Adam, S., Ritter, Schapiro, I., Hegemann, P., Bartl, F. J. Modulation of light energy transfer from chromophore to protein in the channelrhodopsin ReaChR. Biophysical Journal, 2020, 119(3): 705–716.
[21]
Zhang, X. J., Cote, R. H. cGMP signaling in vertebrate retinal photoreceptor cells. Frontiers in Bioscience: a Journal and Virtual Library, 2005, 10: 1191–1204.
[22]
Sai, D. L., Lee, J., Nguyen, D. L., Kim, Y. P. Tailoring photosensitive ROS for advanced photodynamic therapy. Experimental & Molecular Medicine, 2021, 53(4): 495–504.
[23]
Deubner, J., Coulon, P., Diester, I. Optogenetic approaches to study the mammalian brain. Current Opinion in Structural Biology, 2019, 57: 157–163.
[24]
Ma, M. X., Chang, X., Wu, H. T. Animal models of stress and stress-related neurocircuits: A comprehensive review. Stress and Brain, 2021, 1(2): 108–127.
[25]
Ow, Y. L. P., Green, D. R., Hao, Z. Y., Mak, T. W. Cytochrome c: Functions beyond respiration. Nature Reviews Molecular Cell Biology, 2008, 9(7): 532–542.
[26]
Karu, T. I., Kolyakov, S. F. Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and Laser Surgery, 2005, 23(4): 355–361.
[27]
Lane, N. Cell biology: Power games. Nature, 2006, 443(7114): 901–903.
[28]
de Freitas, L. F., Hamblin, M. R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 348–364.
[29]
Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., Mohr, D. C., Schatzberg, A. F. Major depressive disorder. Nature Reviews Disease Primers, 2016, 2: 16065.
[30]
Spellman, T., Liston, C. Toward circuit mechanisms of pathophysiology in depression. The American Journal of Psychiatry, 2020, 177(5): 381–390.
[31]
Nestler, E. J. Jr. The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 2006, 59(12): 1151–1159.
[32]
Kraus, C. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neuroscience & Biobehavioral Reviews, 2017, 77: 317–326.
[33]
Karabatsiakis, A., Böck, C., Salinas-Manrique, J., Kolassa, S., Calzia, E., Dietrich, D. E., Kolassa, I. T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Translational Psychiatry, 2014, 4(6): e397.
[34]
Kennedy, S. H., Konarski, J. Z., Segal, Z. V., Lau, M. A., Bieling, P. J., McIntyre, R. S., Mayberg, H. S. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. The American Journal of Psychiatry, 2007, 164(5): 778–788.
[35]
Moore, C. M., Christensen, J. D., Lafer, B., Fava, M., Renshaw, P. F. Lower levels of nucleoside triphosphate in the basal Ganglia of depressed subjects: A phosphorous-31 magnetic resonance spectroscopy study. The American Journal of Psychiatry, 1997, 154(1): 116–118.
[36]
Xu, Z. Q., Guo, X. B., Yang, Y., Tucker, D., Lu, Y. J., Xin, N., Zhang, G. C., Yang, L. L., Li, J. Z., Du, X. D. et al. Low-level laser irradiation improves depression-like behaviors in mice. Molecular Neurobiology, 2017, 54(6): 4551–4559.
[37]
Eshaghi, E., Sadigh-Eteghad, S., Mohaddes, G., Rasta, S. H. Transcranial photobiomodulation prevents anxiety and depression via changing serotonin and nitric oxide levels in brain of depression model mice: A study of three different doses of 810 nm laser. Lasers in Surgery and Medicine, 2019, 51(7): 634–642.
[38]
Berton, O., Nestler, E. J. New approaches to antidepressant drug discovery: Beyond monoamines. Nature Reviews Neuroscience, 2006, 7(2): 137–151.
[39]
Dinoff, A., Herrmann, N., Swardfager, W., Gallagher, D., Lanctôt, K. L.. The effect of exercise on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF) in major depressive disorder: A meta-analysis. Journal of Psychiatric Research, 2018, 105: 123–131.
[40]
Heo, J. C., Park, J. A., Kim, D. K., Lee, J. H. Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Scientific Reports, 2019, 9: 10114.
[41]
Jeon, S. W., Kim, Y. K. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness? World Journal of Psychiatry, 2016, 6(3): 283.
[42]
Leonard, B., Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience & Biobehavioral Reviews, 2012, 36(2): 764–785.
[43]
Belleau, E. L., Treadway, M. T., Pizzagalli, D. A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biological Psychiatry, 2019, 85(6): 443–453.
[44]
Maurya, P. K., Noto, C., Rizzo, L. B., Rios, A. C., Nunes, S. O. V., Barbosa, D. S., Sethi, S., Zeni, M., Mansur, R. B., Maes, M., Brietzke, E.The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 65: 134–144.
[45]
Dowlati, Y. Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., LanctÔt, K. L. A meta-analysis of cytokines in major depression. Biological Psychiatry, 2010, 67(5): 446–457.
[46]
Madungwe, N. B., Zilberstein, N. F., Feng, Y. S., Bopassa, J. C. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart. American Journal of Cardiovascular Disease, 2016, 6(3): 93–108.
[47]
Yamaura, M., Yao, M., Yaroslavsky, I., Cohen, R., Smotrich, M., Kochevar, I. E. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers in Surgery and Medicine, 2009, 41(4): 282–290.
[48]
Anisman, H., Hayley, S. Inflammatory factors contribute to depression and its comorbid conditions. Science Signaling, 2012, 5(244): pe45.
[49]
Zhang, D., Shen, Q., Wu, X., Xing, D. Photobiomodulation therapy ameliorates glutamatergic dysfunction in mice with chronic unpredictable mild stress-induced depression. Oxidative medicine and cellular longevity, 2021, 2021: 6678276.
[50]
Huang, X., Huang, P, Huang, L., Hu, Z., Liu, X., Shen, J., Xi, Y., Yang, Y., Fu, Y., Tao, Q. et al. A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron, 2021, 109(2): 347–362.e7.
[51]
Huang, L., Xi, Y., Peng, Y., Yang, Y., Huang, X., Fu, Y., Tao, Q., Xiao, J., Yuan, T., An, K. et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron, 2019, 102(1): 128–142.e8.
[52]
Ren, C. R., Luan, L. J., Wui-Man Lau, B., Huang, X., Yang, J., Zhou, Y., Wu, X. H., Gao, J., Pickard, G. E., So, K. F. et al. Direct retino-raphe projection alters serotonergic tone and affective behavior. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2013, 38(7): 1163–1175.
[53]
Huang, L., Yuan, T. F., Tan, M. J., Xi, Y., Hu, Y., Tao, Q., Zhao, Z. K., Zheng, J. J., Han, Y. S., Xu, F. Q. et al. A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nature Communications, 2017, 8: 14908.
[54]
Frodl, T., Jäger, M., Smajstrlova, I., Born, C., Bottlender, R., Palladino, T., Reiser, M., Möller, H. J., Meisenzahl, E. M. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: A 3-year prospective magnetic resonance imaging study. Journal of Psychiatry & Neuroscience, 2008, 33(5): 423–430.
[55]
Xuan, W. J., Vatansever, F., Huang, L. Y., Hamblin, M. R. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. Journal of Biomedical Optics, 2014, 19(10): 108003.
[56]
Salehpour, F., Rasta, S. H., Mohaddes, G., Sadigh-Eteghad, S., Salarirad, S. Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: A comparison between near-infrared and red wavelengths. Lasers in Surgery and Medicine, 2016, 48(7): 695–705.
[57]
Wu, X., Alberico, S. L., Moges, H., De Taboada, L., Tedford, C. E., Anders, J. J. Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress. Lasers in Surgery and Medicine, 2012, 44(3): 227–232.
[58]
Kerppers, F. K., Dos Santos, K. M. M. G., Cordeiro, M. E. R., da Silva Pereira, M. C., Barbosa, D., Pezzini, A. A., Cunha, L. F., Fonseca, M., Bragnholo, K., Salgado, A. S. I. et al. Study of transcranial photobiomodulation at 945-nm wavelength: Anxiety and depression. Lasers in Medical Science, 2020, 35(9): 1945–1954.
[59]
Schiffer, F., Johnston, A. L., Ravichandran, C., Polcari, A., Teicher, M. H., Webb, R. H., Hamblin, M. R. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety. Behavioral and Brain Functions, 2009, 5: 46.
[60]
Disner, S. G., Beevers, C. G. & Gonzalez-Lima, F. Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimulation, 2016, 9(5): 780–787.
[61]
Cassano, P., Cusin, C., Mischoulon, D., Hamblin, M. R., de Taboada, L., Pisoni, A., Chang, T., Yeung, A., Ionescu, D. F., Petrie, S. R. et al. Near-infrared transcranial radiation for major depressive disorder: Proof of concept study. Psychiatry Journal, 2015, 2015: 352979.
[62]
Cassano, P., Petrie, S. R., Mischoulon, D., Cusin, C., Katnani, H., Yeung, A., De Taboada, L., Archibald, A., Bui, E., Baer, L. et al. Transcranial photobiomodulation for the treatment of major depressive disorder. the ELATED-2 pilot trial. Photobiomodulation, Photomedicine, and Laser Surgery, 2018, 36(12): 634–646.
[63]
Kim, B., Brandi, A., Mitrofanis, J., Stone, J., Purushothuman, S., Johnstone, D. M. Remote tissue conditioning—An emerging approach for inducing body-wide protection against diseases of ageing. Ageing Research Reviews, 2017, 37: 69–78.
[64]
Ganeshan, V., Skladnev, N. V., Kim, J. Y., Mitrofanis, J., Stone, J., Johnstone, D. M. Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice. Neuroscience, 2019, 400: 85–97.
[65]
Cruz-Pereira, J. S., Rea, K., Nolan, Y. M., O’Leary, O. F., Dinan, T. G., Cryan, J. F. Depression’s unholy trinity: Dysregulated stress, immunity, and the microbiome. Annual Review of Psychology, 2020, 71: 49–78.
[66]
Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E. F., Wang, J., Tito, R. Y., Schiweck, C., Kurilshikov, A., Joossens, M., Wijmenga, C. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4(4): 623–632.
[67]
Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 2016, 21(6): 786–796.
[68]
Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society, 2014, 26(8): 1155–1162.
[69]
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity, 2015, 48: 186–194.
[70]
Belizário, J. E., Faintuch, J., Garay-Malpartida, M. Gut microbiome dysbiosis and immunometabolism: New frontiers for treatment of metabolic diseases. Mediators of Inflammation, 2018, 2018: 2037838.
[71]
Frankiensztajn, L. M., Elliott, E., Koren, O. The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders. Current Opinion in Neurobiology, 2020, 62: 76–82.
[72]
Huo, R., Zeng, B. H., Zeng, L., Cheng, K., Li, B., Luo, Y. Y., Wang, H. Y., Zhou, C. J., Fang, L., Li, W. X. et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis. Frontiers in Cellular and Infection Microbiology, 2017, 7: 489.
[73]
Gabanyi, I., Lepousez, G., Wheeler, R., Vieites-Prado, A., Nissant, A., Wagner, S., Moigneu, C., Dulauroy, S., Hicham, S., Polomack, B. et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science, 2022, 376(6590): eabj3986.
[74]
Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J. F., Dinan, T. G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 2010, 170(4): 1179–1188.
[75]
Bercik, P. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 2010, 139(6): 2102–2112.e1.
[76]
Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., Cryan, J. F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS, 2011, 108(38): 16050–16055.
[77]
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., Colzato, L. S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 2015, 48: 258–264.
[78]
Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D. et al. Photodynamic therapy of cancer: An update. CA: a Cancer Journal for Clinicians, 2011, 61(4): 250–281.
[79]
Bicknell, B., Liebert, A., Johnstone, D., Kiat, H. Photobiomodulation of the microbiome: Implications for metabolic and inflammatory diseases. Lasers in Medical Science, 2019, 34(2): 317–327.
[80]
Ferraresi, C., Huang, Y. Y., Hamblin, M. R. Photobiomodulation in human muscle tissue: An advantage in sports performance? Journal of Biophotonics, 2016, 9(11–12): 1273–1299.
[81]
Ait-Belgnaoui, A., Durand, H., Cartier, Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 2012, 37(11): 1885–1895.
[82]
Mu, C, Choudhary, A., Mayengbam, S., Barrett, K. T., Rho, J. M., Shearer, J., Scantlebury, M. H. Seizure modulation by the gut microbiota and tryptophan-kynurenine metabolism in an animal model of infantile spasms. eBioMedicine, 2022, 76: 103833.
[83]
Kiecolt-Glaser, J. K., Derry, H. M., Fagundes, C. P. Inflammation: Depression fans the flames and feasts on the heat. The American Journal of Psychiatry, 2015, 172(11): 1075–1091.
[84]
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., Kelley, K. W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 2008, 9(1): 46–56.
[85]
Belayev, L., Obenaus, A., Mukherjee, P. K., Knott, E. J., Khoutorova, L., Reid, M. M., Roque, C. R., Nguyen, L., Lee, J. B., Petasis, N. A. et al. Blocking pro-inflammatory platelet-activating factor receptors and activating cell survival pathways: A novel therapeutic strategy in experimental ischemic stroke. Brain Circulation, 2020, 6(4): 260–268.
[86]
Burduli, N. N., Burduli, N. M. The influence of intravenous laser irradiation of the blood on the dynamics of leptin levels and the quality of life of the patients presenting with rheumatoid arthritis. Voprosy Kurortologii, Fizioterapii, i Lechebnoi Fizicheskoi Kultury, 2015, 92(3): 11–13. (in Russian)
[87]
Fülling, C., Dinan, T. G., Cryan, J. F. Gut microbe to brain signaling: What happens in vagus…. Neuron, 2019, 101(6): 998–1002.
[88]
Han, W. F., Tellez, L. A., Perkins, M. H., Perez, I. O., Qu, T., Ferreira, J., Ferreira, T. L., Quinn, D., Liu, Z.-W., Gao, X.-B. et al. A neural circuit for gut-induced reward. Cell, 2018, 175(3): 665–678.e23.
[89]
Biggio, F., Gorini, G., Utzeri, C., Olla, P., Marrosu, F., Mocchetti, I., Follesa, P. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. The International Journal of Neuropsychopharmacology, 2009, 12(9): 1209–1221.
[90]
Jiang, S. Q., Dandu, C. T., Geng, X. K. Clinical application of nitric oxide in ischemia and reperfusion injury: A literature review. Brain Circulation, 2020, 6(4): 248–253.
[91]
Wang, P. G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A. J. Nitric oxide donors: Chemical activities and biological applications. Chemical Reviews, 2002, 102(4): 1091–1134.
[92]
Baik, J. S., Lee, T. Y., Kim, N. G., Pak, K., Ko, S. H., Min, J. H., Shin, Y. I. Effects of photobiomodulation on changes in cognitive function and regional cerebral blood flow in patients with mild cognitive impairment: A pilot uncontrolled trial. Journal of Alzheimers Disease: JAD, 2021, 83(4): 1513–1519.
[93]
Oishi, J. C., De Moraes, T. F., Buzinari, T. C., Cárnio, E. C., Parizotto, N. A., Rodrigues, G. J. Hypotensive acute effect of photobiomodulation therapy on hypertensive rats. Life Sciences, 2017, 178: 56–60.
[94]
Bhat, S. K., Beilin, L. J., Robinson, M., Burrows, S., Mori, T. A. Relationships between depression and anxiety symptoms scores and blood pressure in young adults. Journal of Hypertension, 2017, 35(10): 1983–1991.
[95]
Khuman, J., Zhang, J., Park, J., Carroll, J. D., Donahue, C., Whalen, M. J. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. Journal of Neurotrauma, 2012, 29(2): 408–417.
[96]
Reinhart, F., El Massri, N., Darlot, F., Torres, N., Johnstone, D. M., Chabrol, C., Costecalde, T., Stone, J., Mitrofanis, J., Benabid, A.-L., Moro, C. 810 nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neuroscience Research, 2015, 92: 86–90.
[97]
Shaw, V. E. Dopaminergic cells in the periaqueductal grey matter of MPTP-treated monkeys and mice; patterns of survival and effect of deep brain stimulation and lesion of the subthalamic nucleus. Parkinsonism & Related Disorders, 2010, 16(5): 338–344.
[98]
Johnstone, D. M., El Massri, N., Moro, C., Spana, S., Wang, X. S., Torres, N., Chabrol, C., De Jaeger, X., Reinhart, F., Purushothuman, S., Benabid, A.-L., Stone, J., Mitrofanis, J. Indirect application of near infrared light induces neuroprotection in a mouse model of Parkinsonism—An abscopal neuroprotective effect. Neuroscience, 2014, 274: 93–101.
[99]
Yano, J. M., Yu, K., Donaldson, G. G., Shastri, G. G., Ann, P., Ma, L., Nagler, C. R., Ismagilov, R. F., Mazmanian, S. K., Hsiao, E. Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2): 264–276.
[100]
Agus, A., Planchais, J., Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe, 2018, 23(6): 716–724.
[101]
Ye, L., Bae, M., Cassilly, C. D., Jabba, S. V., Thorpe, D. W., Martin, A. M., Lu, H.-Y., Wang, J., Thompson, J. D., Lickwar, C. R. et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host & Microbe, 2021, 29(2): 179–196.e9.
[102]
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Ng, L. G., Kundu, P. et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 2014, 6(263): 263ra158.
[103]
Mochizuki-Oda, N., Kataoka, Y., Cui, Y., Yamada, H., Heya, M., Awazu, K. Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neuroscience Letters, 2002, 323(3): 207–210.
[104]
Wu, J. Y., Chen, C. H., Wang, C. Z., Ho, M. L., Yeh, M. L., Wang, Y. H. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PLoS One, 2013, 8(1): e54067.
[105]
Bozon, B., Kelly, A., Josselyn, S. A., Silva, A. J., Davis, S., Laroche, S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2003, 358(1432): 805–814.
[106]
Meng, C. B., He, Z. Y., Xing, D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2013, 33(33): 13505–13517.
[107]
Yao, W., Cao, Q. Q., Luo, S. L., He, L. J., Yang, C., Chen, J. X., Qi, Q., Hashimoto, K., Zhang, J. C. Correction: Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Molecular Psychiatry, 2022, 27(3): 1630.
[108]
Gökçe, E., Güneş, E., Nalçaci, E. Effect of exercise on major depressive disorder and schizophrenia: A BDNF focused approach. Noro Psikiyatri Arsivi, 2019, 56(4): 302–310. (in Turkish)
[109]
Winge, I., McKinney, J. A., Ying, M., D’Santos, C. S., Kleppe, R., Knappskog, P. M., Haavik, J. Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. The Biochemical Journal, 2008, 410(1): 195–204.
[110]
Huang, Y. Y., Sharma, S. K., Carroll, J., Hamblin, M. R. Biphasic dose response in low level light therapy - an update. Dose-Response, 2011, 9(4): 602–618.
[111]
Morgan, M. J., Liu, Z. G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 2011, 21(1): 103–115.
[112]
Chen, A. C. H., Huang, Y. Y., Sharma, S. K., Hamblin, M. R. Effects of 810-nm laser on murine bone-marrow-derived dendritic cells. Photomedicine and Laser Surgery, 2011, 29(6): 383–389.
[113]
Hamblin, M. R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 2017, 4(3): 337–361.
[114]
Popoli, M., Yan, Z., McEwen, B. S., Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 2012, 13(1): 22–37.
[115]
Huang, Y. Y., Nagata, K., Tedford, C. E., Hamblin, M. R. Low-level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro. Journal of Biophotonics, 2014, 7(8): 656–664.
[116]
Jin, H., Zou, Z., Chang, H., Shen, Q., Liu, L., Xing, D. Photobiomodulation therapy for hair regeneration: A synergetic activation of β-CATENIN in hair follicle stem cells by ROS and paracrine WNTs. Stem Cell Reports, 2021, 16(6): 1568–1583.
[117]
Jere, S. W., Houreld, N. N., Abrahamse, H. Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine & Growth Factor Reviews, 2019, 50: 52–59.
[118]
Khakh, B. S., North, R. A. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron, 2012, 76(1): 51–69.
[119]
Hu, Y. L., Gao, Z. H. The role of purinergic signaling in microglial responses. Stress and Brain, 2021, 1(1): 46–58.
[120]
Zhang, L. L., Zhang, Y. J., Xing, D. LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3beta-inactivation mechanism. Journal of Cellular Physiology, 2010, 224(1): 218–228.
[121]
Tuby, H., Maltz, L., Oron, U. Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers in Surgery and Medicine, 2011, 43(5): 401–409.
[122]
Oron, U., Tuby, H., Maltz, L., Sagi-Assif, O., Abu-Hamed, R., Yaakobi, T., Doenyas-Barak, K., Efrati, S. Autologous bone-marrow stem cells stimulation reverses post-ischemic-reperfusion kidney injury in rats. American Journal of Nephrology, 2014, 40(5): 425–433.
[123]
De Winter, F., Holtmaat, A. J. G. D., Verhaagen, J. Neuropilin and class 3 semaphorins in nervous system regeneration. Advances in Experimental Medicine and Biology, 2002, 515: 115–139.
[124]
Termini, C. M., Pang, A., Fang, T. C., Roos, M., Chang, V. Y., Zhang, Y. R., Setiawan, N. J., Signaevskaia, L., Li, M., Kim, M. M. et al. Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nature Communications, 2021, 12: 6990.
[125]
Farsi, Z., Jahn, R. & Woehler, A. Proton electrochemical gradient: Driving and regulating neurotransmitter uptake. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2017, 39(5): 1600240.
[126]
Lee, M. M. S. Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials, 2020, 230: 119582.
[127]
Chen, S., Weitemier, A. Z., Zeng, X., He, L., Wang, X., Tao, Y., Huang, A. J. Y., Hashimotodani, Y., Kano, M., Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science, 2018, 359(6376): 679–684.
Publication history
Copyright
Rights and permissions

Publication history

Received: 23 July 2022
Revised: 20 October 2022
Accepted: 03 December 2022
Published: 29 December 2022
Issue date: December 2022

Copyright

© The Author(s) 2022

Rights and permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return