Journal Home > Volume 2 , Issue 4

Beta-Ca2+/calmodulin-dependent protein kinase II (βCaMKII) is known as a powerful regulator of lateral habenula neuron function and a key molecular determinant of depression. βCaMKII is also abundant in the hippocampus, especially in the dentate gyrus (DG). However, whether βCaMKII in the DG is also involved in emotional behaviors remains unknown. In this study, using βCaMKII-F90G transgenic mice, in which the overexpression of βCaMKII is restricted to the DG, we demonstrated that βCaMKII overexpression in the DG has no effect on the level of anxiety in mice in open field test or light–dark box test. Moreover, tail suspension test and forced swim test showed that the level of depression in βCaMKII-F90G transgenic mice and their littermates was comparable. Taken together, our findings indicate that βCaMKII overexpression in the DG does not result in depression- and anxiety-like behaviors in mice and provide evidence that the function of βCaMKII in emotional behaviors is brain region specific.


menu
Abstract
Full text
Outline
About this article

βCaMKII overexpression in the dentate gyrus does not result in depression- and anxiety-like behaviors in mice

Show Author's information Juzhe Xi2,§Pengcheng Yin1,§Yu Kang3Gal Richter-Levin5Kaiwen Zhang1Xiaohua Cao1( )Yao Liu4( )Yanhong Duan1( )
Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
Shanghai Key Laboratory of Mental Health and Psychological Crisis, Affiliated Mental Health Center (ECNU), Positive Education China Academy, Juzhe Xi’s Master Workroom of Shanghai School Mental Health Service, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
Tong Ren Hospital Shangai Jiao Tong University School of Medicine, Shanghai 200336, China
School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel

§ Juzhe Xi and Pengcheng Yin contributed equally to this work.

Abstract

Beta-Ca2+/calmodulin-dependent protein kinase II (βCaMKII) is known as a powerful regulator of lateral habenula neuron function and a key molecular determinant of depression. βCaMKII is also abundant in the hippocampus, especially in the dentate gyrus (DG). However, whether βCaMKII in the DG is also involved in emotional behaviors remains unknown. In this study, using βCaMKII-F90G transgenic mice, in which the overexpression of βCaMKII is restricted to the DG, we demonstrated that βCaMKII overexpression in the DG has no effect on the level of anxiety in mice in open field test or light–dark box test. Moreover, tail suspension test and forced swim test showed that the level of depression in βCaMKII-F90G transgenic mice and their littermates was comparable. Taken together, our findings indicate that βCaMKII overexpression in the DG does not result in depression- and anxiety-like behaviors in mice and provide evidence that the function of βCaMKII in emotional behaviors is brain region specific.

Keywords: depression, anxiety, beta-Ca2+/calmodulin-dependent protein kinase (βCaMKII), dentate gyrus (DG)

References(32)

[1]
Stone, S. S. D., Teixeira, C. M., Devito, L. M., Zaslavsky, K., Josselyn, S. A., Lozano, A. M., Frankland, P. W. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2011, 31(38): 13469–13484.
[2]
Walker, A. K., Rivera, P. D., Wang, Q., Chuang, J. C., Tran, S., Osborne-Lawrence, S., Estill, S. J., Starwalt, R., Huntington, P., Morlock, L. et al. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Molecular Psychiatry, 2015, 20(4): 500–508.
[3]
Tunc-Ozcan, E., Peng, C. Y., Zhu, Y. W., Dunlop, S. R., Contractor, A., Kessler, J. A. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nature Communications, 2019, 10: 3768.
[4]
Yin, P. C., Xu, H., Wang, Q., Wang, J. Y., Yin, L., Xu, M. C., Xie, Z. Y., Liu, W. Z., Cao, X. H. Overexpression of βCaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the dentate gyrus. Neuropharmacology, 2017, 116: 270–287.
[5]
Wang, Z., Neylan, T. C., Mueller, S. G., Lenoci, M., Truran, D., Marmar, C. R., Weiner, M. W., Schuff, N. Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Archives of General Psychiatry, 2010, 67(3): 296.
[6]
Villarreal, G. Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biological Psychiatry, 2002, 52(2): 119–125.
[7]
Smith, M. E. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: A meta-analysis of structural MRI studies. Hippocampus, 2005, 15(6): 798–807.
[8]
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A., Khan, S., Vaccarino, L. V., Soufer, R., Garg, P. K. et al. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. The American Journal of Psychiatry, 2003, 160(5): 924–932.
[9]
Gurvits, T. V. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biological Psychiatry, 1996, 40(11): 1091–1099.
[10]
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., Tonegawa, S. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 2012, 484(7394): 381–385.
[11]
Tonegawa, S., Morrissey, M. D., Kitamura, T. The role of engram cells in the systems consolidation of memory. Nature Reviews Neuroscience, 2018, 19(8): 485–498.
[12]
Ramirez, S., Liu, X., MacDonald, C. J., Moffa, A., Zhou, J., Redondo, R. L., Tonegawa, S. Activating positive memory engrams suppresses depression-like behaviour. Nature, 2015, 522(7556): 335–339.
[13]
Sahay, A., Hen, R. E. Adult hippocampal neurogenesis in depression. Nature Neuroscience, 2007, 10(9): 1110–1115.
[14]
Kang, E., Wen, Z., Song, H., Christian, K. M., Ming, G. L. Adult neurogenesis and psychiatric disorders. Cold Spring Harbor Perspectives in Biology, 2016, 8(9): a019026.
[15]
Christian, K. M., Song, H. J., Ming, G. L. Functions and dysfunctions of adult hippocampal neurogenesis. Annual Review of Neuroscience, 2014, 37: 243–262.
[16]
Gonçalves, J. T., Schafer, S. T., Gage, F. H. Adult neurogenesis in the hippocampus: From stem cells to behavior. Cell, 2016, 167(4): 897–914.
[17]
Anacker, C., Luna, V. M., Stevens, G. S., Millette, A., Shores, R., Jimenez, J. C., Chen, B., Hen, R. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 2018, 559(7712): 98–102.
[18]
Jin, J., Kim, S. N., Liu, X., Zhang, H., Zhang, C., Seo, J. S., Kim, Y., Sun, T. miR-17-92 cluster regulates adult hippocampal neurogenesis, anxiety, and depression. Cell Reports, 2016, 16(6): 1653–1663.
[19]
Lisman, J., Schulman, H., Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews Neuroscience, 2002, 3(3): 175–190.
[20]
Li, K., Zhou, T., Liao, L. J., Yang, Z. F., Hu, H. L. Beta CaMKII in lateral habenula mediates core symptoms of depression. Science, 2013, 341(6149): 1016–20.
[21]
Cho, M. H., Cao, X., Wang, D., Tsien, J. Z. Dentate gyrus-specific manipulation of beta-Ca2+/calmodulin-dependent kinase II disrupts memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(41): 16317–16322.
[22]
Koch, S. B. J., Morey, R. A., Roelofs, K. The role of the dentate gyrus in stress-related disorders. Molecular Psychiatry, 2020, 25(7): 1361–1363.
[23]
Nuninga, J. O., Mandl, R. C. W., Sommer, I. E. C. Correction: The dentate gyrus in depression: Directions for future research. Molecular Psychiatry, 2021, 26(6): 2677.
[24]
Niewoehner, B., Single, F. N., Hvalby Ø, Jensen, V., Meyer zum Alten Borgloh, S., Seeburg, P. H., Rawlins, J. N., Sprengel, R., Bannerman, D. M. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. The European Journal of Neuroscience, 2007, 25(3): 837–846.
[25]
Meng, F. T., Liu, J., Dai, J. J., Lian, H. F., Jiang, S. J., Li, Q. Y., Wu, M., Wang, W. T., Wang, D., Zhao, D. et al. PPM1F in dentate gyrus modulates anxiety-related behaviors by regulating BDNF expression via AKT/JNK/p-H3S10 pathway.Molecular Neurobiology, 2021, 58(7): 3529–3544.
[26]
Lu, B., Zhang, T. Y., Yang, F. Bone in the brain? osteocalcin-expressing neurons in adult hippocampus promote neurogenesis and suppress anxiety. Biological Psychiatry, 2021, 89(6): 539–540.
[27]
Yamasaki, N., Maekawa, M., Kobayashi, K., Kajii, Y., Maeda, J., Soma, M., Takao, K., Tanda, K., Ohira, K., Toyama, K. et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Molecular Brain, 2008, 1(1): 6.
[28]
Robison, A. J. Emerging role of CaMKII in neuropsychiatric disease. Trends in Neurosciences, 2014, 37(11): 653–662.
[29]
Rawat, R., Tunc-Ozcan, E., McGuire, T. L., Peng, C. Y., Kessler, J. A. Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nature Communications, 2022, 13: 2650.
[30]
Abdoulaye, I. A., Wu, S. S., Chibaatar, E., Yu, D. F., Le, K., Cao, X. J., Guo, Y. J. Ketamine induces lasting antidepressant effects by modulating the NMDAR/ CaMKII-mediated synaptic plasticity of the hippocampal dentate gyrus in depressive stroke model. Neural Plasticity, 2021, 2021: 6635084.
[31]
Dias, G. P., Cavegn, N., Nix, A., do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S., Nardi, A. E., Gardino, P. F., Thuret, S. The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Medicine and Cellular Longevity, 2012, 2012: 541971.
[32]
David, D. J., Wang, J. W., Samuels, B. A., Rainer, Q., David, I., Gardier, A. M., Hen, R. Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. The Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry, 2010, 16(5): 578–591.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 September 2022
Revised: 17 October 2022
Accepted: 21 November 2022
Published: 29 December 2022
Issue date: December 2022

Copyright

© The Author(s) 2022

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (No. 31771177), MOST China-Israel cooperation (No. 2016YFE0130500), and Shanghai Science and Technology Commission (No. 20DZ2260300). Shanghai Key Laboratory of Multidimensional Information Processing (No. MIP202102), and the Fundamental Research Funds for the Central Universities and National Science and Technology Innovation 2030 Major Program (No. 2022ZD0205100).

Rights and permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return