Journal Home > Volume 2 , Issue 1-2

Obesity is one of the most severe public health problems and may result in many other related diseases, such as heart disease, diabetes, and stroke. Living habits, particularly excessive caloric intake, are a vital contributor to increasing obesity incidence worldwide. Recent studies have revealed an intimate cross-talk between living habits and the gut microbiome. The gut microbiome has also been identified as a critical player in the cause of obesity. Here we used 16S rDNA amplicon sequencing to investigate changes in the gut microbiome composition of mice fed with a high-fat diet (HFD). The total number of OTUs, Chao index, and Shannon index of the gut microbiome showed an increase in the abundance of specific gut microbiome species. Alternatively, Simpson index indicated a decrease in gut microbiome diversity after HFD feeding. We also found that HFD leads to augments in Firmicutes:Bacteroidetes ratio mainly caused by increased Firmicutes. The total abundance of Bacteroidetes was not changed at the phylum level, while at the family level, both Rikenellaceae and Bacteroidaceae showed a significant increase after the HFD. Additionally, after HFD, we found an increase in the abundance of Proteobacteria related to inflammation and a significant decrease in the proportion of Verrucomicrobia. Our results show that HFD induces a broad gut microbiome change in mice.


menu
Abstract
Full text
Outline
About this article

High-fat-diet-induced gut microbiome changes in mice

Show Author's information Wenqi Tang1,2,3,§Libiao Pan1,2,§Jingjing Cheng1,2Xi Wang1,2Lu Zheng1,2Siyu Wang1,2Yudong Zhou1,2Hao Wang1,2( )
Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou 310058, China
NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou 310052, China

§ Wenqi Tang and Libiao Pan contributed equally to this work.

Abstract

Obesity is one of the most severe public health problems and may result in many other related diseases, such as heart disease, diabetes, and stroke. Living habits, particularly excessive caloric intake, are a vital contributor to increasing obesity incidence worldwide. Recent studies have revealed an intimate cross-talk between living habits and the gut microbiome. The gut microbiome has also been identified as a critical player in the cause of obesity. Here we used 16S rDNA amplicon sequencing to investigate changes in the gut microbiome composition of mice fed with a high-fat diet (HFD). The total number of OTUs, Chao index, and Shannon index of the gut microbiome showed an increase in the abundance of specific gut microbiome species. Alternatively, Simpson index indicated a decrease in gut microbiome diversity after HFD feeding. We also found that HFD leads to augments in Firmicutes:Bacteroidetes ratio mainly caused by increased Firmicutes. The total abundance of Bacteroidetes was not changed at the phylum level, while at the family level, both Rikenellaceae and Bacteroidaceae showed a significant increase after the HFD. Additionally, after HFD, we found an increase in the abundance of Proteobacteria related to inflammation and a significant decrease in the proportion of Verrucomicrobia. Our results show that HFD induces a broad gut microbiome change in mice.

Keywords: gut microbiome, 16S rDNA, high-fat diet, Firmicutes, Bacteroidaceae

References(48)

[1]
di Cesare, M., Bentham, J., Stevens, G. A., Zhou, B., Lu, Y., Bixby, H., Cowan, M. J., Riley, L. M., Hajifathalian, K., Fortunato, L. et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. The Lancet, 2016, 387(10026): 1377–1396.
[2]
Ng, M., Fleming. T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 2014, 384(9945): 766–781.
[3]
Goodarzi, M. O. Genetics of obesity: What genetic association studies have taught us about the biology of obesity and its complications. The Lancet Diabetes & Endocrinology, 2018, 6(3): 223–236. 2018.
[4]
Fumitaka, I., Eckalbar, W. L., Yi, W., Murphy, K. K., Navneet, M., Christian, V., Nadav, A. Genomic and epigenomic mapping of leptin-responsive neuronal populations involved in body weight regulation. Nature Metabolism, 2019, 1(4): 475–484.
[5]
Loos, R. J. The genetics of adiposity. Current Opinion in Genetics & Development, 2018, 50: 86–95.
[6]
Steinert, R. E., Christine, F. B., Lori, A., Michael, H., Christoph, B., Nori, G. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiological Reviews, 2017, 97(1): 411–463.
[7]
Frost, R. J. A., Olson, E. N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21075–21080.
[8]
Nieuwdorp, M., Gilijamse, P. W., Pai, N., Kaplan, L. M. Role of the microbiome in energy regulation and metabolism. Gastroenterology, 2014, 146(6): 1525–1533.
[9]
Gorkiewicz, G., Moschen, A. Gut microbiome: A new player in gastrointestinal disease. Virchows Archiv, 2018, 472(1): 159–172.
[10]
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Vincent, M., Mardis, E. R., Gordon, J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027–1031.
[11]
Antje, D. M., Suparna, M., Schollenberger, A. E., Michael, K. K., Tobias, M., Alfred, K., Huson, D. H., Bischoff, S. C. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. BioMed Research International, 2015, 2015: 806248.
[12]
Turnbaugh, P. J., Micah, H., Tanya, Y., Cantarel, B. L., Alexis, D., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P. et al. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228): 480–484.
[13]
Ley, R. E., Turnbaugh, P. J., Samuel, K., Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature, 2006, 444(7122): 1022–1023.
[14]
Emmanuelle, L. C., Trine, N., Qin, J. J., Edi, P., Falk, H., Gwen, F., Mathieu, A., Manimozhiyan, A., Jean-Michel, B., Sean, K. et al. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500(7464): 541–546.
[15]
Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J. Y., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013, 341(6150): 1241214.
[16]
Albenberg, L., Esipova, T. V., Judge, C. P., Bittinger, K., Chen, J., Laughlin, A., Grunberg, S., Baldassano, R. N., Lewis, J. D., Li, H. Z. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 2014, 147(5): 1055–1063.e8.
[17]
Sonnenburg, J. L., Fredrik, B. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016, 535(7610): 56–64.
[18]
Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 2016, 167(5): 1339–1353.e21.
[19]
Kelly, C. J., Zheng, L., Campbell, E. L., Saeedi, B., Scholz, C. C., Bayless, A. J., Wilson, K. E., Glover, L. E., Kominsky, D. J., Magnuson, A. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe, 2015, 17(5): 662–671.
[20]
Razquin, C., Martinez, J. A., Martinez-Gonzalez, M. A., Mitjavila, M. T., Estruch, R., Marti, A. A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. European Journal of Clinical Nutrition, 2009, 63(12): 1387–1393.
[21]
Mujico, J. R., Baccan, G. C., Gheorghe, A., Díaz, L. E., Marcos, A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. British Journal of Nutrition, 2013, 110(4): 711–720.
[22]
Lin, H., An, Y. P., Hao, F. H., Wang, Y. L., Tang, H. R. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Scientific Reports, 2016, 6(1): 21618.
[23]
Duncan, S. H., Lobley, G. E., Holtrop, G., Ince, J., Johnstone, A. M., Louis, P., Flint, H. J. Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 2008, 32(11): 1720–1724.
[24]
Turnbaugh, P. J., Bäckhed, F., Fulton, L., Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe, 2008, 3(4): 213–223.
[25]
Liu, R. X., Hong, J., Xu, X. Q., Feng, Q., Zhang, D. Y., Gu, Y. Y., Shi, J., Zhao, S. Q., Liu, W., Wang, X. K. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 2017, 23(7): 859–868.
[26]
Cussotto, S., Sandhu, K. V., Dinan, T. G., Cryan, J. F. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective. Frontiers in Neuroendocrinology, 2018, 51: 80–101.
[27]
Bailey, M. T., Dowd, S. E., Galley, J. D., Hufnagle, A. R., Allen, R. G., Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behavior and Immunity, 2011, 25(3): 397–407.
[28]
Wan, Y., Tong, W. F., Zhou, R. K., Li, J., Yuan, J. H., Wang, F. L., Li, D. Habitual animal fat consumption in shaping gut microbiota and microbial metabolites. Food & Function, 2019, 10(12): 7973–7982.
[29]
He, C., Cheng, D. D., Peng, C., Li, Y. S., Zhu, Y., Lu, N. H. High-fat diet induces dysbiosis of gastric microbiota prior to gut microbiota in association with metabolic disorders in mice. Frontiers in Microbiology, 2018, 9: 639.
[30]
Angela, M. E., Velazquez, K. T., Herbert, K. M. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18(5): 515–520.
[31]
Meli'sa, C., Corrie, W., Layla, A. N., Sweazea, K. L. Six-week high-fat diet alters the gut microbiome and promotes cecal inflammation, endotoxin production, and simple steatosis without obesity in male rats. Lipids, 2019, 54(2-3): 119–131.
[32]
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Sloan, D. A., Yug, V., Fischbach, M. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484): 559–563.
[33]
Hooda, S., Boler, B. M. V., Serao, M. C. R., Brulc, J. M., Staeger, M. A., Boileau, T. W., Dowd, S. E., Fahey, G. C., Swanson, K. S. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. The Journal of Nutrition, 2012, 142(7): 1259–1265.
[34]
Schnabl, B., Brenner, D. A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology, 2014, 146(6): 1513–1524.
[35]
Velázquez, K. T., Enos, R. T., Bader, J. E., Sougiannis, A. T., Carson, M. S., Ioulia, C., Carson, J. A., Nagarkatti, P. S., Mitzi, N., Angela, M. E. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World Journal of Hepatology, 2019, 11(8): 619–637.
[36]
Cheng, M., Zhang, X., Zhu, J. Y., Cheng, L., Cao, J. X., Wu, Z. F., Weng, P. F., Zheng, X. J. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food & Function, 2018, 9(2): 1079–1087.
[37]
Ley, R. E., Fredrik, B., Peter, T., Lozupone, C. A., Knight, R. D., Gordon, J. I. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11070–11075.
[38]
Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., Relman, D. A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728): 1635–1638.
[39]
Frank, D. N., St, A. A. L., Feldman, R. A., Boedeker, E. C., Noam, H., Pace, N. R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(34): 13780–13785.
[40]
Fredrik, B., Hao, D., Ting, W., Hooper, L. V., Young, K. G., Andras, N., Semenkovich, C. F., Gordon, J. I. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718–15723.
[41]
Martens, E. C., Robyn, R., Heuser, J. E., Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. The Journal of Biological Chemistry, 2009, 284(27): 18445–18457.
[42]
Thingholm, L. B., Rühlemann, M. C., Koch, M., Fuqua, B., Laucke, G., Boehm, R., Bang, C., Franzosa, E. A., Hübenthal, M., Rahnavard, A. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host & Microbe, 2019, 26(2): 252–264.e10.
[43]
Marlene, R., Berit, H., Julia, Z., Eva, A., Helmuth, B., Haslberger, A. G. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocrine, Metabolic & Immune Disorders Drug Targets, 2016, 16(2): 99–106.
[44]
Luo, X. M., Edwards, M. R., Mu, Q. H., Yu, Y., Vieson, M. D., Reilly, C. M., Ansar, A. S., Bankole, A. A. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Applied and Environmental Microbiology, 2017, 84(4): e02288–17.
[45]
Wei, F., Xu, H. F., Yan, C. X., Rong, C. L., Liu, B. Y., Zhou, H. Z. Changes of intestinal flora in patients with systemic lupus erythematosus in northeast China. PLoS One, 2019, 14(3): e0213063.
[46]
Ellen, S. M., Merenstein, D. J., Gregor, R., Gibson, G. R., Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 2019, 16(10): 605–616.
[47]
Amandine, E., Clara, B., Lucie, G., Ouwerkerk, J. P., Céline, D., Bindels, L. B., Yves, G., Muriel, D., Muccioli, G. G., Delzenne, N. M. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): 9066–9071.
[48]
Routy, B., le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018, 359(6371): 91–97.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 December 2021
Revised: 27 April 2022
Accepted: 05 May 2022
Published: 19 June 2022
Issue date: June 2022

Copyright

© The Author(s) 2022

Acknowledgements

We thank Dr. Mohamed Helmy for critical comments on this manuscript. This work was supported by grants from the National Natural Science Foundation of China (Nos. 31970940, 32171014, 32100813, and 32000706), the Zhejiang Provincial Natural Science Foundation of China (No. LR18H090001), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2018PT31041), the Program for Introducing Talents in Discipline to Universities, and the Fundamental Research Funds for the Central Universities (No. 2021FZZX001-37).

Rights and permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attributtion-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Return