Journal Home > Volume 3 , Issue 4

Polyoxometalates (POMs) are known for their well-established catalytic properties, particularly in photocatalysis, and have made significant strides in achieving selective C(sp3)−H functionalization. However, due to the complexity of the POM structures, the reactivity and regioselectivity of POMs in organic conversions remain unclear. Here, the reactivity and regioselectivity of the C(sp3)–H trifluoromethylation of pyrrolidine via decatungstate anion/copper ([W10O32]4−/Cu) dual catalysis were theoretically investigated. Density functional theory (DFT) computations revealed that the β-regioselective activation of pyrrolidine occurs more readily than does α-regioselective activation; this is due to the reduction in activity of the ortho α-C–H bond by protonation. Furthermore, the reactivity of hydrogen atom transfer (HAT) catalysts for C(sp3)–H bond activation follows the order [W10O32]4− > amine radical cation > fluorescein. The outstanding reactivity of [W10O32]4− is attributable to its rigid structure and exposed active surface sites. We demonstrate a linear relationship between the steric volume of the protective group on pyrrolidine and the C–H bond selectivity catalyzed by [W10O32]4−. In other words, a larger steric volume of the protective group on pyrrolidine leads to easier attainment of a single Cβ–H bond activation product. We hope that this theoretical analysis will provide valuable guidance for obtaining high selectivity target products in experimental setups.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

C(sp3)–H trifluoromethylation of pyrrolidine by [W10O32]4−/copper synergetic photocatalysis: Theoretical investigation of reactivity and regioselectivity

Show Author's information Yu-Jiao Dong1,3Zhong-Min Su2,3( )Wei Guan1 ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130012, China

Abstract

Polyoxometalates (POMs) are known for their well-established catalytic properties, particularly in photocatalysis, and have made significant strides in achieving selective C(sp3)−H functionalization. However, due to the complexity of the POM structures, the reactivity and regioselectivity of POMs in organic conversions remain unclear. Here, the reactivity and regioselectivity of the C(sp3)–H trifluoromethylation of pyrrolidine via decatungstate anion/copper ([W10O32]4−/Cu) dual catalysis were theoretically investigated. Density functional theory (DFT) computations revealed that the β-regioselective activation of pyrrolidine occurs more readily than does α-regioselective activation; this is due to the reduction in activity of the ortho α-C–H bond by protonation. Furthermore, the reactivity of hydrogen atom transfer (HAT) catalysts for C(sp3)–H bond activation follows the order [W10O32]4− > amine radical cation > fluorescein. The outstanding reactivity of [W10O32]4− is attributable to its rigid structure and exposed active surface sites. We demonstrate a linear relationship between the steric volume of the protective group on pyrrolidine and the C–H bond selectivity catalyzed by [W10O32]4−. In other words, a larger steric volume of the protective group on pyrrolidine leads to easier attainment of a single Cβ–H bond activation product. We hope that this theoretical analysis will provide valuable guidance for obtaining high selectivity target products in experimental setups.

Keywords: photocatalysis, density functional theory (DFT), regioselectivity, [W10O32]4−, C–H bond activation

References(70)

[1]

Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C-H bonds elaboration. Chem. Rev. 2022, 122, 1875–1924.

[2]

Goldman, A. S.; Goldberg, K. I. Organometallic C–H Bond Activation: An Introduction. In Activation and Functionalization of C–H Bonds; Karen I. Goldberg, K. I.; Goldman, A. S., Eds.; ACS Symposium Series 885: American Chemical Society: Washington, DC, 2004; Chapter 1, pp 1–43.

[3]

Hartwig, J. F.; Larsen, M. A. Undirected, homogeneous C-H bond functionalization: Challenges and opportunities. ACS Cent. Sci. 2016, 2, 281–292.

[4]

Liu, Y. G.; You, T. J.; Wang, H. X.; Tang, Z.; Zhou, C. Y.; Che, C. M. Iron- and cobalt-catalyzed C(sp3)-H bond functionalization reactions and their application in organic synthesis. Chem. Soc. Rev. 2020, 49, 5310–5358.

[5]

Jiang, C.; Wang, L.; Zhang, H. G.; Chen, P. H.; Guo, Y. L.; Liu, G. S. Enantioselective copper-catalyzed trifluoromethylation of benzylic radicals via ring opening of cyclopropanols. Chem 2020, 6, 2407–2419.

[6]

Ide, T.; Masuda, S.; Kawato, Y.; Egami, H.; Hamashima, Y. Benzylic C-H trifluoromethylation via photoenol. Org. Lett. 2017, 19, 4452–4455.

[7]

He, J. C.; Nguyen, T. N.; Guo, S.; Cook, S. P. Csp3-H trifluoromethylation of unactivated aliphatic systems. Org. Lett. 2021, 23, 702–705.

[8]

Choi, G.; Lee, G. S.; Park, B.; Kim, D.; Hong, S. H. Direct C(sp3)-H trifluoromethylation of unactivated alkanes enabled by multifunctional trifluoromethyl copper complexes. Angew. Chem., Int. Ed. 2021, 60, 5467–5474.

[9]

Paeth, M.; Carson, W.; Luo, J. H.; Tierney, D.; Cao, Z.; Cheng, M. J.; Liu, W. Copper-mediated trifluoromethylation of benzylic Csp3-H bonds. Chem.—Eur. J. 2018, 24, 11559–11563.

[10]

Egami, H.; Ide, T.; Kawato, Y.; Hamashima, Y. Benzylic C-H trifluoromethylation of phenol derivatives. Chem. Commun. 2015, 51, 16675–16678.

[11]

Guo, S.; AbuSalim, D. I.; Cook, S. P. Aqueous benzylic C-H trifluoromethylation for late-stage functionalization. J. Am. Chem. Soc. 2018, 140, 12378–12382.

[12]

Zeng, X. J.; Yan, W. H.; Zacate, S. B.; Chao, T. H.; Sun, X. D.; Cao, Z.; Bradford, K. G. E.; Paeth, M.; Tyndall, S. B.; Yang, K. D. et al. Copper-catalyzed decarboxylative difluoromethylation. J. Am. Chem. Soc. 2019, 141, 11398–11403.

[13]

Xu, P.; Fan, W. Z.; Chen, P. H.; Liu, G. S. Enantioselective radical trifluoromethylation of benzylic C-H bonds via cooperative photoredox and copper catalysis. J. Am. Chem. Soc. 2022, 144, 13468–13474.

[14]

Shabashov, D.; Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds. J. Am. Chem. Soc. 2010, 132, 3965–3972.

[15]

Zhang, S. Y.; Li, Q.; He, G.; Nack, W. A.; Chen, G. Stereoselective synthesis of β-alkylated α-amino acids via palladium-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with primary alkyl Halides. J. Am. Chem. Soc. 2013, 135, 12135–12141

[16]

Zhu, R. Y.; He, J.; Wang, X. C.; Yu, J. Q. Ligand-promoted alkylation of C(sp3)-H and C(sp2)-H bonds. J. Am. Chem. Soc. 2014, 136, 13194–13197.

[17]

Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T. et al. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743.

[18]

Crabtree, R. H. Introduction to selective functionalization of C-H bonds. Chem. Rev. 2010, 110, 575–575.

[19]

Davies, H. M. L.; Du Bois, J.; Yu, J. Q. C-H functionalization in organic synthesis. Chem. Soc. Rev. 2011, 40, 1855–1856.

[20]

Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic carbene insertion into C-H bonds. Chem. Rev. 2010, 110, 704–724.

[21]

Whited, M. T.; Grubbs, R. H. Late metal carbene complexes generated by multiple C-H activations: Examining the continuum of M=C bond reactivity. Acc. Chem. Res. 2009, 42, 1607–1616.

[22]

Zhou, S. D.; Li, J. L.; Schlangen, M.; Schwarz, H. Bond activation by Metal-Carbene complexes in the gas phase. Acc. Chem. Res. 2016, 49, 494–502.

[23]

Xia, Y.; Qiu, D.; Wang, J. B. Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chem. Rev. 2017, 117, 13810–13889.

[24]

Qi, X. T.; Lan, Y. Recent advances in theoretical studies on transition-metal-catalyzed carbene transformations. Acc. Chem. Res. 2021, 54, 2905–2915.

[25]

Dong, S. X.; Liu, X. H.; Feng, X. M. Asymmetric catalytic rearrangements with α-diazocarbonyl compounds. Acc. Chem. Res. 2022, 55, 415–428.

[26]

Fraile, J. M.; García, J. I.; Mayoral, J. A.; Roldán, M. Simple and efficient heterogeneous copper catalysts for enantioselective C-H carbene insertion. Org. Lett. 2007, 9, 731–733.

[27]

Doyle, M. P.; Goldberg, K. I. C-H functionalization. Acc. Chem. Res. 2012, 45, 777.

[28]

Kärkäs, M. D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 2018, 47, 5786–5865.

[29]

Hartwig, J. F. Evolution of C-H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2–24.

[30]

Rouquet, G.; Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem., Int. Ed. 2013, 52, 11726–11743.

[31]

Le, C.; Liang, Y. F.; Evans, R. W.; Li, X. M.; MacMillan, D. W. C. Selective sp3 C-H alkylation via polarity-match-based cross-coupling. Nature 2017, 547, 79–83.

[32]

Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C-H bonds as latent nucleophiles. Science 2016, 352, 1304–1308.

[33]

Sarver, P. J.; Bacauanu, V.; Schultz, D. M.; DiRocco, D. A.; Lam, Y. H.; Sherer, E. C.; MacMillan, D. W. C. The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)-H trifluoromethylation. Nat. Chem. 2020, 12, 459–467.

[34]

Yan, J. M.; Tang, H. D.; Kuek, E. J. R.; Shi, X. C.; Liu, C. G.; Zhang, M. L.; Piper, J. L.; Duan, S. Q.; Wu, J. Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents. Nat. Commun. 2021, 12, 7214.

[35]

Yan, J. M.; Cheo, H. W.; Teo, W. K.; Shi, X. C.; Wu, H.; Idres, S. B.; Deng, L. W.; Wu, J. A Radical smiles rearrangement promoted by neutral eosin Y as a direct hydrogen atom transfer photocatalyst. J. Am. Chem. Soc. 2020, 142, 11357–11362.

[36]

Twilton, J.; Christensen, M.; DiRocco, D. A.; Ruck, R. T.; Davies, I. W.; MacMillan, D. W. C. Selective hydrogen atom abstraction through induced bond polarization: Direct α-arylation of alcohols through photoredox, HAT, and nickel catalysis. Angew. Chem., Int. Ed. 2018, 57, 5369–5373.

[37]

Houk, K. N.; Liu, F. Holy grails for computational organic chemistry and biochemistry. Acc. Chem. Res. 2017, 50, 539–543.

[38]

Yuan, M. B.; Song, Z. H.; Badir, S. O.; Molander, G. A.; Gutierrez, O. On the nature of C(sp3)-C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: A case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 2020, 142, 7225–7234.

[39]

Maity, B.; Zhu, C.; Yue, H. F.; Huang, L.; Harb, M.; Minenkov, Y.; Rueping, M.; Cavallo, L. Mechanistic insight into the photoredox-nickel-HAT triple catalyzed arylation and alkylation of α-amino Csp3-H bonds. J. Am. Chem. Soc. 2020, 142, 16942–16952.

[40]

Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: Uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 2015, 137, 4896–4899.

[41]

Qi, Z. H.; Ma, J. Dual role of a photocatalyst: Generation of Ni(0) catalyst and promotion of catalytic C-N bond formation. ACS Catal. 2018, 8, 1456–1463.

[42]

De Aguirre, A.; Funes-Ardoiz, I.; Maseras, F. Four oxidation states in a single photoredox nickel-based catalytic cycle: A computational study. Angew. Chem., Int. Ed. 2019, 58, 3898–3902.

[43]

Xiao, P.; Li, C. X.; Fang, W. H.; Cui, G. L.; Thiel, W. Mechanism of the visible-light-mediated copper-catalyzed coupling reaction of phenols and alkynes. J. Am. Chem. Soc. 2018, 140, 15099–15113.

[44]

Yang, Y. T.; Liu, L.; Fang, W. H.; Shen, L.; Chen, X. B. Theoretical exploration of energy transfer and single electron transfer mechanisms to understand the generation of triplet Nitrene and the C(sp3)-H amidation with photocatalysts. JACS Au 2022, 2, 2596–2606.

[45]

Wang, S. H.; Ma, P. C.; Shaik, S.; Chen, H. Valence-inverted states of nickel(II) complexes perform facile C-H bond activation. J. Am. Chem. Soc. 2022, 144, 14607–14613.

[46]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[47]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16, Revision C. 01; Gaussian, Inc.: Wallingford, CT, USA, 2019.
[48]

Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

[49]

Hehre, W. J.; Pople, J. A. Self-consistent molecular orbital methods XIII. An extended Gaussian-type basis for boron. J. Chem. Phys. 1972, 56, 4233–4234.

[50]

Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161–4163.

[51]

Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141.

[52]

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

[53]

Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

[54]

Besora, M.; Vidossich, P.; Lledós, A.; Ujaque, G.; Maseras, F. Calculation of reaction free energies in solution: A comparison of current approaches. J. Phys. Chem. A 2018, 122, 1392–1399.

[55]

Liang, Y. J.; Sun, M. J.; Zhang, G.; Yin, J. J.; Guan, W.; Xiong, T.; Zhang, Q. Copper-catalyzed hydroamination of polyfluoroalkyl substituted alkenes via asymmetric radical cross-coupling access to α-chiral tertiary alkylamines. Chem Catal. 2022, 2, 2379–2390.

[56]

Bao, L. Y.; Gao, R. W.; Wang, S.; Li, R. H.; Zhu, B.; Su, Z. M.; Guan, W. Theoretical study of NiI-NiIII cycle mediated by heterogeneous zinc in C-N cross-coupling reaction. Phys. Chem. Chem. Phys. 2022, 24, 7617–7623.

[57]

Dong, Y. J.; Zhu, B.; Geng, Y.; Zhao, Z. W.; Su, Z. M.; Guan, W. Radical mechanism of IrIII/NiII-metallaphotoredox-catalyzed C(sp3)-H functionalization triggered by proton-coupled electron transfer: Theoretical insight. CCS Chem. 2022, 4, 1429–1440.

[58]

Li, R.-H.; Wang, S.; Zhao, Z.-W.; Geng, Y.; Wang, X.-L.; Su, Z.-M.; Guan, W. Springboard role for iridium photocatalyst: Theoretical insight of C(sp3)-N cross-coupling by photoredox-mediated iridium/copper dual catalysis versus single-copper catalysis. ChemCatChem 2022, 14, e202101737.

[59]

Liang, Y. J.; Zhu, B.; Su, Z. M.; Guan, W. IrIII/NiII-metallaphotoredox-catalyzed enantioselective decarboxylative arylation of α-amino acids: Theoretical insight of enantio-determining outer-sphere reductive elimination. Inorg. Chem. 2022, 61, 10190–10197.

[60]

Dong, Y. J.; Zhu, B.; Liang, Y. J.; Guan, W.; Su, Z. M. Origin and regioselectivity of direct hydrogen atom transfer mechanism of C(sp3)-H arylation by [W10O32]4−/Ni metallaphotoredox catalysis. Inorg. Chem. 2021, 60, 18706–18714.

[61]

Meng, L. Y.; Dong, Y. J.; Zhu, B.; Liang, Y. J.; Su, Z. M.; Guan, W. Theoretical insight into decatungstate photocatalyzed alkylation of N-tosylimine via hydrogen atom transfer and proton-coupled electron transfer. Dalton Trans. 2022, 51, 7928–7935.

[62]

Maity, B.; Zhu, C.; Rueping, M.; Cavallo, L. Mechanistic understanding of arylation vs alkylation of aliphatic Csp3-H bonds by decatungstate-nickel catalysis. ACS Catal. 2021, 11, 13973–13982.

[63]

Su, X. F.; Li, S. J.; Yan, L. K. N-H bond activation catalyzed by an anderson-type polyoxometalate-based compound: Key role of transition-metal heteroatom. Inorg. Chem. 2023, 62, 15673–15679.

[64]

Su, X. F.; Wei, Y. G.; Ma, N. N.; Zhang, H. C.; Yan, L. K. Theoretical insight into oxidation of anilines to azobenzenes catalyzed by hexamolybdate: Outer-sphere electron and proton transfer. J. Phys. Chem. C 2023, 127, 4124–4131.

[65]

Wang, M.; Zhang, Z.; Zhang, S. L.; Liu, W.; Shang, W. Z.; Su, X. F.; Liang, Y.; Wang, F. R.; Ma, X. J.; Li, Y. D. et al. Non-planar nest-like [Fe2S2] cluster sites for efficient oxygen reduction catalysis. Angew. Chem., Int. Ed. 2023, 62, e202300826.

[66]

Agarwal, R. G.; Coste, S. C.; Groff, B. D.; Heuer, A. M.; Noh, H.; Parada, G. A.; Wise, C. F.; Nichols, E. M.; Warren, J. J.; Mayer, J. M. Free energies of proton-coupled electron transfer reagents and their applications. Chem. Rev. 2022, 122, 1–49.

[67]

Li, Z. F.; Song, H.; Guo, R.; Zuo, M. H.; Hou, C. F.; Sun, S. N.; He, X.; Sun, Z. Z.; Chu, W. Y. Visible-light-induced condensation cyclization to synthesize benzimidazoles using fluorescein as a photocatalyst. Green Chem. 2019, 21, 3602–3605.

[68]

Prier, C. K.; MacMillan, D. W. C. Amine α-heteroarylation via photoredox catalysis: A homolytic aromatic substitution pathway. Chem. Sci. 2014, 5, 4173–4178.

[69]

Noble, A.; MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 2014, 136, 11602–11605.

[70]

Bickelhaupt, F. M.; Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem., Int. Ed. 2017, 56, 10070–10086.

File
0068_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 April 2024
Revised: 30 April 2024
Accepted: 13 May 2024
Published: 05 June 2024
Issue date: December 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22271023 and 22173016).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return