Journal Home > Volume 3 , Issue 4

Polyoxometalates (POMs), renowned for their robust multielectron transfer capabilities, are utilized as photocatalysts. A Cu&POM based complex comprising H3PMo12O40 (PMo12) and 1,10-phenanthroline has been structured into a supramolecular framework through hydrogen bonding and π–π interactions. This complex demonstrates exceptional photocatalytic efficacy in the oxidation of toluene and the photodegradation of metronidazole. The oxidation of toluene with Cu-PMo12 achieved a yield and selectivity of 100% under low energy conditions, producing unprecedented results and demonstrating outstanding stability in cycling tests. Photodegradation of metronidazole using Cu-PMo12 achieved a degradation rate of 0.178. This work could facilitate the design and synthesis of novel Cu&POM based complexes with superior photocatalytic activities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polyoxometalate-based Cu(II) complexes as the photocatalyst for oxidation of toluene and photodegradation of metronidazole

Show Author's information Fei Wang1Chaojun Jing1( )Jiejie Ping1Danyang He1Wenhui Shang1Muling Zeng2 ( )Nan Wang1( )Zhiyu Jia1( )
Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Institute of Materials Science of Barcelona, Campus de la UAB, 08193 Bellaterra, Spain

Abstract

Polyoxometalates (POMs), renowned for their robust multielectron transfer capabilities, are utilized as photocatalysts. A Cu&POM based complex comprising H3PMo12O40 (PMo12) and 1,10-phenanthroline has been structured into a supramolecular framework through hydrogen bonding and π–π interactions. This complex demonstrates exceptional photocatalytic efficacy in the oxidation of toluene and the photodegradation of metronidazole. The oxidation of toluene with Cu-PMo12 achieved a yield and selectivity of 100% under low energy conditions, producing unprecedented results and demonstrating outstanding stability in cycling tests. Photodegradation of metronidazole using Cu-PMo12 achieved a degradation rate of 0.178. This work could facilitate the design and synthesis of novel Cu&POM based complexes with superior photocatalytic activities.

Keywords: mechanism, photocatalysis, polyoxometalates, photodegradation, Cu-based complex

References(53)

[1]

Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U. Jr.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673.

[2]

Rojas, S.; Horcajada, P. Metal-organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 2020, 120, 8378–8415.

[3]

Lin, H. F.; Li, L. P.; Zhao, M. L.; Huang, X. S.; Chen, X. M.; Li, G. S.; Yu, R. C. Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: Tuning catalysts from inert to highly reactive. J. Am. Chem. Soc. 2012, 134, 8328–8331.

[4]

Wu, Q. P.; Van De Krol, R. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: Role of oxygen vacancies and iron dopant. J. Am. Chem. Soc. 2012, 134, 9369–9375.

[5]

Seidensticker, S.; Zarfl, C.; Cirpka, O. A.; Fellenberg, G.; Grathwohl, P. Shift in mass transfer of wastewater contaminants from microplastics in the presence of dissolved substances. Environ. Sci. Technol. 2017, 51, 12254–12263.

[6]

Malakootian, M.; Kannan, K.; Gharaghani, M. A.; Dehdarirad, A.; Nasiri, A.; Shahamat, Y. D.; Mahdizadeh, H. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J. Environ. Chem. Eng. 2019, 7, 103457.

[7]

Kompa, A.; Mahesha, M. G.; Kekuda, D.; Rao, K. M. Spectroscopic investigation of defects in spin coated titania based thin films for photocatalytic applications. J. Solid State Chem. 2021, 303, 122488.

[8]

Mohsen, M.; Naeem, I.; Awaad, M.; Tantawy, H.; Baraka, A. A cadmium-imidazole coordination polymer as solid state buffering material: Synthesis, characterization and its use for photocatalytic degradation of ionic dyes. J. Solid State Chem. 2020, 289, 121493.

[9]

Wen, X.; Wang, W. Q.; Ye, Q. P.; Zhou, Y. F.; Yang, J.; Sun, N.; Tan, Y. G.; Wang, W. B.; Hou, Y.; Yan, C. J. One-step synthesis of rice husk carbon with dangling CC bonds loaded g-C3N4 for enhanced photocatalytic degradation. J. Clean. Prod. 2020, 272, 122625.

[10]

Saidi, I.; Soutrel, I.; Floner, D.; Fourcade, F.; Bellakhal, N.; Amrane, A.; Geneste, F. Indirect electroreduction as pretreatment to enhance biodegradability of metronidazole. J. Hazard. Mater. 2014, 278, 172–179.

[11]

Cao, J. Y.; Li, J. J.; Chu, W.; Cen, W. L. Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: Optimization, degradation pathway, and mechanism. Chem. Eng. J. 2020, 400, 125813.

[12]

Worathitanon, C.; Jangyubol, K.; Ruengrung, P.; Donphai, W.; Klysubun, W.; Chanlek, N.; Prasitchoke, P.; Chareonpanich, M. High performance visible-light responsive Chl-Cu/ZnO catalysts for photodegradation of rhodamine B. Appl. Catal. B: Environ. 2019, 241, 359–366.

[13]

Liu, W. F.; Qiu, Q. M.; Zhang, M.; Su, Z. M.; An, Q. Q.; Lv, H. J.; Jia, Z. Y.; Yang, G. Y. Two new Cu-based borate catalysts with cubic supramolecular cages for efficient catalytic hydrogen evolution. Dalton Trans. 2020, 49, 10156–10161.

[14]

Lu, F. D.; Liu, D.; Zhu, L.; Lu, L. Q.; Yang, Q.; Zhou, Q. Q.; Wei, Y.; Lan, Y.; Xiao, W. J. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 2019, 141, 6167–6172.

[15]

Li, P. H.; Wang, Y. Y.; Wang, X.; Wang, Y.; Liu, Y.; Huang, K. K.; Hu, J.; Duan, L. M.; Hu, C. W.; Liu, J. H. Selective oxidation of benzylic C-H bonds catalyzed by Cu(II)/{PMo12}. J. Org. Chem. 2020, 85, 3101–3109.

[16]

Li, S. J.; Li, N.; Li, G.; Ma, Y. B.; Huang, M. Y.; Xia, Q. C.; Zhao, Q. Y.; Chen, X. N. Silver-modified polyniobotungstate for the visible light-induced simultaneous cleavage of C-C and C-N bonds. Polyoxometalates 2023, 2, 9140024.

[17]

Zhang, G. Y.; Wang, Y. F. Metal-oxide clusters with semiconductive heterojunction counterparts. Polyoxometalates 2023, 2, 9140020.

[18]

Ma, Y. B.; Gao, F.; Xiao, W. R.; Li, N.; Li, S. J.; Yu, B.; Chen, X. N. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin. Chem. Lett. 2022, 33, 4395–4399.

[19]

Chang, Q.; Meng, X. Y.; Ruan, W. J.; Feng, Y. Q.; Li, R.; Zhu, J. Y.; Ding, Y.; Lv, H. J.; Wang, W.; Chen, G. Y. et al. Metal-organic cages with {SiW9Ni4} polyoxotungstate nodes. Angew. Chem., Int. Ed. 2022, 61, e202117637.

[20]

Hu, Q. Y.; Chen, S. S.; Wågberg, T.; Zhou, H. S.; Li, S. J.; Li, Y. D.; Tan, Y. L.; Hu, W. Q.; Ding, Y.; Han, X. B. Developing insoluble polyoxometalate clusters to bridge homogeneous and heterogeneous water oxidation photocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202303290.

[21]

Lai, S. Y.; Ng, K. H.; Cheng, C. K.; Nur, H.; Nurhadi, M.; Arumugam, M. Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: A review. Chemosphere 2021, 263, 128244.

[22]

Ma, P. T.; Hu, F.; Wang, J. P.; Niu, J. Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coord. Chem. Rev. 2019, 378, 281–309.

[23]

Shi, Z. L.; Li, J.; Han, Q. X.; Shi, X. Y.; Si, C.; Niu, G. Q.; Ma, P. T.; Li, M. X. Polyoxometalate-supported aminocatalyst for the photocatalytic direct synthesis of imines from alkenes and amines. Inorg. Chem. 2019, 58, 12529–12533.

[24]

Wang, Y. J.; Zhuang, G. L.; Zhang, J. W.; Luo, F.; Cheng, X.; Sun, F. L.; Fu, S. S.; Lu, T. B.; Zhang, Z. M. Co-dissolved isostructural polyoxovanadates to construct single-atom-site catalysts for efficient CO2 photoreduction. Angew. Chem., Int. Ed. 2023, 62, e202216592.

[25]

Lan, Q.; Jin, S. J.; Yang, B. H.; Zhao, Q.; Si, C. L.; Xie, H. Q.; Zhang, Z. M. Metal-Oxo cluster catalysts for photocatalytic water splitting and carbon dioxide reduction. Trans. Tianjin Univ. 2022, 28, 214–225.

[26]

Han, X. B.; Zhang, Z. M.; Zhang, T.; Li, Y. G.; Lin, W. B.; You, W. S.; Su, Z. M.; Wang, E. B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366.

[27]

Li, Q.; Wei, Y. G.; Hao, J.; Zhu, Y. L.; Wang, L. S. Unexpected C=C bond formation via doubly dehydrogenative coupling of two saturated sp3 C-H bonds activated with a polymolybdate. J. Am. Chem. Soc. 2007, 129, 5810–5811.

[28]

Li, J.; He, J. C.; Si, C.; Li, M. X.; Han, Q. X.; Wang, Z. L.; Zhao, J. W. Special-selective C–H oxidation of toluene to benzaldehyde by a hybrid polyoxometalate photocatalyst including a rare [P6W48Fe6O180]30− anion. J. Catal. 2020, 392, 244–253.

[29]

Yu, B.; Zhang, S. M.; Wang, X. Helical Microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.

[30]

Wang, J.; Chen, Y.; Cheng, N.; Feng, L.; Gu, B. H.; Liu, Y. Multivalent supramolecular self-assembly between β-cyclodextrin derivatives and polyoxometalate for photodegradation of dyes and antibiotics. ACS Appl. Bio Mater. 2019, 2, 5898–5904.

[31]

Pal, D.; Biswas, S.; Nayak, A. K.; Pal, A. Application of polyoxometalates and their composites for the degradation of antibiotics in water medium. Water. Emerg. Contam. Nanoplast. 2023, 2, 21.

[32]

Gong, L. G.; Liu, J. M.; Yu, K.; Su, Z. H.; Zhou, B. B. Two new {As3W3} polyoxometalates decorated with metal-phen complexes: Synthesis, structure and properties. J. Solid State Chem. 2019, 270, 280–286.

[33]

Wu, Y. Y.; Dong, J.; Liu, C. P.; Jing, X. T.; Liu, H. F.; Guo, Y.; Chi, Y. N.; Hu, C. W. Reduced polyoxomolybdate immobilized on reduced graphene oxide for rapid catalytic decontamination of a sulfur mustard simulant. Dalton Trans. 2021, 50, 9796–9803.

[34]

Wang, Q. Q.; Wang, D. X.; Wu, Y. L.; Li, L. X.; Sun, X. Y. Synthesis of polyoxometalate-based complexes and photocatalytic degradation of metronidazole. J. Solid State Chem. 2022, 309, 122966.

[35]

Wu, L. Z.; Ma, H. Y.; Han, Z. G.; Li, C. X. Synthesis, structure and property of a new inorganic-organic hybrid compound [Cu(phen)2][Cu(phen)H2O]2[Mo5P2O23]·3. 5H2O. Solid State Sci. 2009, 11, 43–48.

[36]

Bajpe, S. R.; Henke, S.; Lee, J. H.; Bristowe, P. D.; Cheetham, A. K. Disorder and polymorphism in Cu(II)-polyoxometalate complexes: [Cu1.5(H2O)7.5PW12O40]·4.75H2O, cis- & trans-[Cu2(H2O)10SiW12O40]·6H2O. CrystEngComm 2016, 18, 5327–5332.

[37]

Shi, S. Y.; Chen, L. Y.; Zhu, T. H.; Cui, X. B. Two compounds constructed from Strandberg-type polyoxoanions, metals and organic ligands. J. Coord. Chem. 2017, 70, 3823–3836.

[38]

Han, Z. Y.; Li, X. Y.; Li, Q.; Li, H. S.; Xu, J.; Li, N.; Zhao, G. X.; Wang, X.; Li, H. L.; Li, S. D. Construction of the POMOF@polypyrrole composite with enhanced ion diffusion and capacitive contribution for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 6265–6275.

[39]

Wei, X. Y.; Wei, J. W.; Huang, L. P.; Yan, T. T.; Luo, F. Facile fabricating the polyoxometalates functionalized graphene nanocomposite applied in electrocatalytic reduction. Inorg. Chem. Commun. 2017, 81, 10–14.

[40]

Yan, L. J.; Wang, Q.; Qu, W. Q.; Yan, T. T.; Li, H. R.; Wang, P. L.; Zhang, D. S. Tuning Ti δ +-Vo·-Pt δ + interfaces over Pt/TiO2 catalysts for efficient photocatalytic oxidation of toluene. Chem. Eng. J. 2022, 431, 134209.

[41]

Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C−H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.

[42]

Shao, Q.; Lin, H. P.; Shao, M. W. Determining locations of conduction bands and valence bands of semiconductor nanoparticles based on their band gaps. ACS Omega 2020, 5, 10297–10300.

[43]

Kaeding, W. W.; Lindblom, R. O.; Temple, R. G.; Mahon, H. I. Oxidation of toluene and other alkylated aromatic hydrocarbons to benzoic acids and phenols. Ind. Eng. Chem. Process Des. Dev. 1965, 4, 97–101.

[44]

Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

[45]

Xiao, W. R.; Li, S. J.; Zhao, Y.; Ma, Y. B.; Li, N.; Zhang, J.; Chen, X. N. Multinuclear transition metal-containing polyoxometalates constructed from Nb/W mixed-addendum precursors: Synthesis, structures and catalytic performance. Dalton Trans. 2021, 50, 8690–8695.

[46]

Mousavi, S. A.; Janjani, H. Antibiotics adsorption from aqueous solutions using carbon nanotubes: A systematic review. Toxin Rev. 2020, 39, 87–98.

[47]

Xu, L. J.; Yang, Y. J.; Li, W. Y.; Tao, Y. J.; Sui, Z. G.; Song, S.; Yang, J. Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted Fenton-like catalysts for metronidazole removal. Sci. Total Environ. 2019, 658, 219–233.

[48]

Meziani, D.; Abdmeziem, K.; Bouacida, S.; Trari, M. Photo-electrochemical and physical characterizations of a new single crystal POM-based material. Application in photocatalysis. J. Mol. Struct. 2016, 1125, 540–545.

[49]

Gurrentz, J. M.; Rose, M. J. Covalent attachment of polyoxometalates to passivated Si(111) substrates: A stable and electronic defect-free Si|POM platform. J. Phys. Chem. C 2021, 125, 14287–14298.

[50]

Zhang, J.; Zhan, M. Y.; Zheng, L. L.; Zhang, C.; Liu, G. D.; Sha, J. Q.; Liu, S. J.; Tian, S. FeOCl/POM heterojunctions with excellent Fenton catalytic performance via different mechanisms. Inorg. Chem. 2019, 58, 250–258.

[51]

Liu, J. L.; Shi, W. X.; Wang, X. ZnO-POM cluster sub-1 nm nanosheets as robust catalysts for the oxidation of thioethers at room temperature. J. Am. Chem. Soc. 2021, 143, 16217–16225.

[52]

Gupta, R.; Kumar, G.; Gupta, R. Encapsulation-led adsorption of neutral dyes and complete photodegradation of cationic dyes and antipsychotic drugs by lanthanide-based macrocycles. Inorg. Chem. 2022, 61, 7682–7699.

[53]

Zhang, X. W.; Wang, F.; Wang, C. C.; Wang, P.; Fu, H. F.; Zhao, C. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation. Chem. Eng. J. 2021, 426, 131927.

File
0067_ESM.pdf (814.7 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 January 2024
Revised: 04 May 2024
Accepted: 13 May 2024
Published: 24 May 2024
Issue date: December 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 22171024 and 21801014). The Analysis and Testing Center of Beijing Institute of Technology is highly appreciated for their instrument support.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return