Journal Home > Volume 3 , Issue 3

The design and synthesis of a bifunctional catalyst to tackle environmental pollution caused by 2-chloroethyl ethyl sulfide (CEES) and phenolic compounds is meaningful. In this study, a new three-dimensional (3D) polyoxovanadate (POV)-based metal–organic framework, [Co(L)(V4O12)0.5(H2O)]·2H2O (1; L = N,N’-bis(3-methylpyridin-3-yl)-2,6-naphthalenediamide), was synthesized under hydrothermal conditions. 1 was characterized using single-crystal X-ray diffraction analysis, infrared spectroscopy, and powder X-ray diffraction. Structural analysis shows that the [V4O12]4– clusters and pairs of Co2+ cations are alternately connected to form a one-dimensional inorganic chain, eventually generating a 3D (4,4)-connected framework through the expansion of L, which exhibits a two fold interpenetration array. As a bifunctional catalyst, 1 exhibits satisfactory catalytic properties for the selective oxidation of 2-chloroethyl ethyl sulfide to the corresponding sulfoxide, with an effective conversion of > 99% and selectivity of 97%. Furthermore, 1 exhibits excellent photocatalytic degradation activity toward phenol, 2-chlorophenol, and m-cresol under visible light. The degradation efficiencies were above 92.6% for 140 min. The photocatalytic reaction kinetics, mechanisms of photodegradation, and recycling capability of phenol were also investigated in detail.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

New two fold interpenetrating 3D polyoxovanadate-based metal–organic framework as bifunctional catalyst for the removal of 2-chloroethyl ethyl sulfide and phenolic compounds

Show Author's information Shuang LiYuan ZhengGuo-Cheng Liu ( )Xiao-Hui LiZhong Zhang ( )Xiu-Li Wang ( )
College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, China

Abstract

The design and synthesis of a bifunctional catalyst to tackle environmental pollution caused by 2-chloroethyl ethyl sulfide (CEES) and phenolic compounds is meaningful. In this study, a new three-dimensional (3D) polyoxovanadate (POV)-based metal–organic framework, [Co(L)(V4O12)0.5(H2O)]·2H2O (1; L = N,N’-bis(3-methylpyridin-3-yl)-2,6-naphthalenediamide), was synthesized under hydrothermal conditions. 1 was characterized using single-crystal X-ray diffraction analysis, infrared spectroscopy, and powder X-ray diffraction. Structural analysis shows that the [V4O12]4– clusters and pairs of Co2+ cations are alternately connected to form a one-dimensional inorganic chain, eventually generating a 3D (4,4)-connected framework through the expansion of L, which exhibits a two fold interpenetration array. As a bifunctional catalyst, 1 exhibits satisfactory catalytic properties for the selective oxidation of 2-chloroethyl ethyl sulfide to the corresponding sulfoxide, with an effective conversion of > 99% and selectivity of 97%. Furthermore, 1 exhibits excellent photocatalytic degradation activity toward phenol, 2-chlorophenol, and m-cresol under visible light. The degradation efficiencies were above 92.6% for 140 min. The photocatalytic reaction kinetics, mechanisms of photodegradation, and recycling capability of phenol were also investigated in detail.

Keywords: metal–organic framework, bifunctional catalyst, selective oxidation, photodegradation, phenolic compounds, polyoxovanadate, mustard gas

References(58)

[1]

Castiello, C.; Junghanns, P.; Mergel, A.; Jacob, C.; Ducho, C.; Valente, S.; Rotili, D.; Fioravanti, R.; Zwergel, C.; Mai, A. GreenMedChem: The challenge in the next decade toward eco-friendly compounds and processes in drug design. Green Chem. 2023, 25, 2109–2169.

[2]

Sun, J. Y.; Wang, Z. L.; Zhang, Z.; Liu, G. C.; Wang, X. L. Hydrothermal synthesis, structure, and catalytic properties of a (4,6)-connected framework constructed from Keggin-type polyoxometalate units and tetranuclear copper complexes. Polyoxometalates 2024, 3, 9140039.

[3]

Li, S. F.; Li, J. S.; Zhu, H. T.; Zhang, L. Y.; Sang, X. J.; Zhu, Z. M.; You, W. S.; Zhang, F. X. Development of polyoxometalate-based Ag-H2biim inorganic-organic hybrid compounds functionalized for the acid electrocatalytic hydrogen evolution reaction. Dalton Trans. 2023, 52, 15725–15733.

[4]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[5]
Li, S.; Sun, J. Y.; Liu, G. C.; Zhang, S.; Zhang, Z.; Wang, X. L. A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.109148.
DOI
[6]

Mizrahi, D. M.; Saphier, S.; Columbus, I. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM. J. Hazard. Mater. 2010, 179, 495–499.

[7]

Guo, Y. Y.; Liu, X. H.; Liu, X. D.; Xu, N.; Wang, X. L. A series of polyoxometalate-based COF composites by one-pot mechanosynthesis of thioether to sulfone. Dalton Trans. 2023, 52, 12264–12270.

[8]

Li, J.; Du, P.; Liu, Y. Y.; Ma, J. F. Assembly of polyoxometalate-thiacalix[4]arene-based inorganic-organic hybrids as efficient catalytic oxidation desulfurization catalysts. Dalton Trans. 2021, 50, 1349–1356.

[9]

Yang, L.; Zhang, Z.; Zhang, C. N.; Wang, X. L. A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective photogeneration of hydrogen. Rare Met. 2024, 43, 236–246.

[10]

Liu, Y. Y.; Moon, S. Y.; Hupp, J. T.; Farha, O. K. Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants. ACS Nano 2015, 9, 12358–12364.

[11]

Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.

[12]

Liu, H. F.; Sun, X. R.; Dong, J.; Liu, C. P.; Lu, W.; Xu, Z. M.; Zhen, N.; Zhang, D.; Chi, Y. N.; Hu, C. W. Immobilization of Brønsted basic hexaniobate on the Lewis acidic zirconia using an emulsion assisted self-assembly strategy for synergistic boosting of nerve agent simulant decontamination. Inorg. Chem. Front. 2023, 10, 1436–1446.

[13]

Liu, J. J.; Sun, S. N.; Liu, J.; Kuang, Y.; Shi, J. W.; Dong, L. Z.; Li, N.; Lu, J. N.; Lin, J. M.; Li, S. L. et al. Achieving high-efficient photoelectrocatalytic degradation of 4-chlorophenol via functional reformation of Titanium-oxo clusters. J. Am. Chem. Soc. 2023, 145, 6112–6122.

[14]

Zheng, Y.; Xu, X. X. Surface atom regulation on polyoxometalate electrocatalyst for simultaneous low-voltage H2 production and phenol degradation. ACS Appl. Mater. Interfaces 2020, 12, 53739–53748.

[15]

Dai, Y. C.; Zhang, S. Y.; Xiao, X. X.; Li, M. J.; Liu, J. C.; Chen, L. J.; Zhao, J. W. A double-tartrate-bridged deca-nuclearity europium-tungsten cluster embedded selenotungstate and its selective optical sensing of o-nitrophenol. Polyoxometalates 2023, 2, 9140041.

[16]

Jiang, Z. G.; Zeng, H. M.; Zhang, X. Y.; Tan, Y.; Lan, Y. Z.; Wang, Y.; Long, D. L.; Cronin, L.; Zhan, C. H. A synergistic {Cu2-W12O40} catalyst with high conversion for homo-coupling of terminal alkynes. Inorg. Chem. Front. 2023, 10, 1255–1261.

[17]

Wang, H. Y.; Xu, X. H.; Shang, Q. Q.; Xiao, K. X.; Chen, J. H.; Yang, Y. Q.; Raee, E.; Zhang, D. D.; Niu, J. Y.; Liu, T. B. The rare-earth derivant of mixed-polyoxoniobate clusters with high proton release capacity. Inorg. Chem. Front. 2022, 9, 6596–6601.

[18]

Ma, Y. B.; Gao, F.; Xiao, W. R.; Li, N.; Li, S. J.; Yu, B.; Chen, X. N. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin. Chem. Lett. 2022, 33, 4395–4399.

[19]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[20]

Wang, M. L.; Guo, Y. J.; Zhao, G. Y.; Chen, B. K.; Bi, Y. F. Ni4-thiacalix[4]arene sandwiched Mo8 polyoxometalate bimetallic nanoclusters for electrocatalytic glucose oxidation. Chin. Chem. Lett. 2023, 34, 107365.

[21]

Li, H. Y.; Pan, H.; Fan, Y. H.; Bai, Y.; Dang, D. B. Syntheses, crystal structures, and properties of four polyoxometalate-based metal-organic frameworks based on Ag(I) and 4,4’-dipyridine-N,N’-dioxide. Polyoxometalates 2022, 1, 9140007.

[22]

Hu, Q. L.; Li, K.; Chen, X. J.; Liu, Y. F.; Yang, G. P. Polyoxometalate catalysts for the synthesis of N-heterocycles. Polyoxometalates 2024, 3, 9140048.

[23]

Li, H. L.; Yang, G. Y. New {Co9} cluster-added banana-shaped polyoxometalate modified by B atom. Polyoxometalates 2023, 2, 9140034.

[24]

Wang, Y.; Li, H. L.; Yang, G. Y. Synthesis, structure, and characteristics of a hexa-Ti-oxo-cluster-added Keggin-type polyoxometalate. Polyoxometalates 2023, 2, 9140033.

[25]

Wang, M. L.; Yin, D.; Cao, Y. D.; Dong, X. Y.; Gao, G. G.; Hu, X.; Jin, C.; Fan, L. L.; Yu, J.; Liu, H. Surface modification of hollow capsule by Dawson-type polyoxometalate as sulfur hosts for ultralong-life lithium-sulfur batteries. Chin. Chem. Lett. 2022, 33, 4350–4356.

[26]

Li, B.; Meng, Y. X.; Liu, Q. Q.; Chen, X. Y.; Liu, X.; Zang, H. Y. The assembly of [Mo2O2S2]2+ based on polydentate phosphonate templates and their proton conductivity. Chem. Commun. 2023, 59, 13446–13449.

[27]

Li, D. H.; Zhang, X. Y.; Lv, J. Q.; Cai, P. W.; Sun, Y. Q.; Sun, C.; Zheng, S. T. Photo-activating biomimetic polyoxomolybdate for boosting oxygen evolution in neutral electrolytes. Angew. Chem., Int. Ed. 2023, 62, e202312706.

[28]

Wang, X. L.; Tian, Y.; Chang, Z. H.; Lin, H. Y. A series of polyoxometalate-based metal-bis(pyridyl-tetrazole) complexes with high electrocatalytic activity for hydrogen evolution reaction in alkaline and acid media. ACS Sustain. Chem. Eng. 2020, 8, 15696–15702.

[29]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[30]

Liu, Q. Q.; Lu, J. J.; Lin, H. Y.; Wang, X. L.; Chang, Z. H.; Chen, Y. Z.; Zhang, Y. C. Polyoxometalate-based metal-organic complexes constructed from a new bis-pyrimidine-amide ligand with high capacitance performance and selectivity for the detection of Cr(VI). Chin. Chem. Lett. 2022, 33, 4389–4394.

[31]

Ni, L. B.; Gu, J.; Jiang, X. Y.; Xu, H. J.; Wu, Z.; Wu, Y. C.; Liu, Y.; Xie, J.; Wei, Y. G.; Diao, G. W. Polyoxometalate-cyclodextrin-based cluster-organic supramolecular framework for polysulfide conversion and guest-host recognition in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202306528.

[32]

Cui, L. P.; Wang, M. L.; Yu, K.; Lv, J. H.; Zheng, X. D.; Zhou, B. B. The phosphomolybdate hybrids based on nanoscale heteropoly blue and metal-organic chain for supercapacitor and dual-functional electrochemical biosensor. J. Energy Storage 2023, 60, 106592.

[33]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[34]

Zhao, Y. N.; Li, W. L.; Li, Y. Q.; Qiu, T. Y.; Mu, X.; Ma, Y. Z.; Zhao, Y.; Zhang, J. P.; Zhang, J. W.; Li, Y. G. et al. 3D Covalent polyoxovanadate-organic framework as an anode for high-performance lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2306598.

[35]
Wu, Z. K.; Dai, G. Y.; Li, Q.; Wei, Z. Y.; Ru, S.; Li, J. D.; Jia, H. L.; Zang, D. J.; Čolović, M.; Wei, Y. G. POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.109061.
DOI
[36]

Dang, T. Y.; Li, R. H.; Tian, H. R.; Guan, W.; Lu, Y.; Liu, S. X. Highly efficient multi-site synergistic catalysis of a polyoxovanadate-based metal-organic framework for benzylic C-H bond oxidation. J. Mater. Chem. A 2022, 10, 16514–16523.

[37]

Li, F. R.; Ji, T.; Chen, W. C.; Du, W.; Wang, Y. H.; Hou, Y. N.; Chen, W. L. Photochemical ammonia synthesis over reduced polyoxovanadate-intercalated defective ZnAl layered double hydroxide nanosheets. Inorg. Chem. 2023, 62, 9528–9537.

[38]

Ren, X. Y.; Chen, B. K.; Zhang, G.; Bi, Y. F.; Dai, L. L.; Yang, G. P. Making one VIV substitution for Mo on classical [MoV2O4]2+ group: The first heterobimetallic Mo-V subunit in polyoxomolybdate-bisphosphonate family. Inorg. Chem. Front. 2023, 10, 5782–5788.

[39]

Huang, H. X.; Chen, B. K.; Fu, Y. R.; Sun, J.; Bi, Y. F.; Zhou, M. D. Green oxidation of isochromans to isochromanones with molecular oxygen catalyzed by a tetranuclear vanadium cluster. Chin. J. Chem. 2023, 41, 1967–1972.

[40]

Wang, J. L.; Cao, J. P.; Du, Z. Y.; Liu, X. M.; Li, J. N.; Ping, Q. D.; Zang, T. T.; Xu, Y. Four novel Z-shaped hexanuclear vanadium oxide clusters as efficient heterogeneous catalysts for cycloaddition of CO2 and oxidative desulfurization reactions. Chin. Chem. Lett. 2023, 34, 106917.

[41]

Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Cryst. 1985, 41, 244–247.

[42]

Tian, H. R.; Zhang, Z.; Liu, S. M.; Dang, T. Y.; Li, X. H.; Lu, Y.; Liu, S. X. A novel polyoxovanadate-based Co-MOF: Highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis. J. Mater. Chem. A 2020, 8, 12398–12405.

[43]

Wang, X.; Zhang, T.; Li, Y. H.; Lin, J. F.; Li, H.; Wang, X. L. In situ ligand-transformation-involved synthesis of inorganic-organic hybrid polyoxovanadates as efficient heterogeneous catalysts for the selective oxidation of sulfides. Inorg. Chem. 2020, 59, 17583–17590.

[44]

Tian, H. R.; Li, R. H.; Miao, J.; Liu, S. X.; Wang, F. F.; Zheng, Z. P. Additive-free selective oxidation of aromatic alcohols with molecular oxygen catalyzed by a mixed-valence polyoxovanadate-based metal-organic framework. Dalton Trans. 2023, 52, 9121–9130.

[45]

Tong, Z. B.; Xu, M. Q.; Li, Q.; Liu, C.; Wang, Y. L.; Sha, J. Q. Polyelectrolyte-functionalized reduced graphene oxide wrapped helical POMOF nanocomposites for bioenzyme-free colorimetric biosensing. Talanta 2020, 220, 121373.

[46]

Tian, Y.; Chang, Z. H.; Wang, X. L.; Lin, H. Y.; Zhang, Y. C.; Liu, Q. Q.; Chen, Y. Z. Pseudocapacitance improvement of polymolybdates-based metal-organic complexes via modification with hydrogen molybdenum bronze by electrochemical treatment. Chem. Eng. J. 2022, 428, 132380.

[47]

Yu, S.; Ying, J.; Tian, A. X.; Wang, X. L. A series of isopolymolybdate-viologen compounds: Structures and photochromic, organic amine sensing, and double anti-counterfeiting properties. Sci. Sin. Chim. 2023, 53, 1711–1723.

[48]

Han, M. D.; Niu, Y. J.; Wan, R.; Xu, Q. F.; Lu, J. K.; Ma, P. T.; Zhang, C.; Niu, J. Y.; Wang, J. P. A crown-shaped Ru-substituted arsenotungstate for selective oxidation of sulfides with hydrogen peroxide. Chem.—Eur. J. 2018, 24, 11059–11066.

[49]

Zhang, X. Y.; Li, Y. M.; Li, Y.; Wang, S. T.; Wang, X. H. Polyoxometalate immobilized on graphene via click reaction for simultaneous dismutation of H2O2 and oxidation of sulfur mustard simulant. ACS Appl. Nano Mater. 2019, 2, 6971–6981.

[50]

Li, J. K.; Wei, C. P.; Guo, D. G. J.; Wang, C. C.; Han, Y. F.; He, G. F.; Zhang, J. P.; Huang, X. Q.; Hu, C. W. Inorganic-organic hybrid polyoxovanadates based on [V4O12]4− or [VO3]22− clusters: Controllable synthesis, crystal structures and catalytic properties in selective oxidation of sulfides. Dalton Trans. 2020, 49, 14148–14157.

[51]

Hou, Y. J.; An, H. Y.; Zhang, Y. M.; Hu, T.; Yang, W.; Chang, S. Z. Rapid destruction of two types of chemical warfare agent simulants by hybrid polyoxomolybdates modified by carboxylic acid ligands. ACS Catal. 2018, 8, 6062–6069.

[52]

Dang, T. Y.; Li, R. H.; Tian, H. R.; Wang, Q.; Lu, Y.; Liu, S. X. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal-organic framework for efficient catalytic oxidation of sulfides. Inorg. Chem. Front. 2021, 8, 4367–4375.

[53]
Huang, J. R.; Shi, W. X.; Xu, S. Y.; Luo, H.; Zhang, J. W.; Lu, T. B.; Zhang, Z. M. Water-mediated selectivity control of CH3OH versus CO/CH4 in CO2 photoreduction on single-atom implanted nanotube arrays. Adv. Mater., in press, DOI: 10.1002/adma.202306906.
DOI
[54]

Dong, Y. Y.; Feng, Y. Q.; Li, Z.; Zhou, H.; Lv, H. J.; Yang, G. Y. CsPbBr3/polyoxometalate composites for selective photocatalytic oxidation of benzyl alcohol. ACS Catal. 2023, 13, 14346–14355.

[55]

Wang, S.; Du, X.; Yao, C. H.; Cai, Y. F.; Ma, H. Y.; Jiang, B. J.; Ma, J. S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity. Nano Res. 2023, 16, 2152–2162.

[56]

Bi, H. X.; Yin, X. Y.; He, J. Y.; Song, H.; Lu, S. J.; Ma, Y. Y.; Han, Z. G. Conjugated organic component-functionalized hourglass-type phosphomolybdates for visible-light photocatalytic Cr(VI) reduction in wide pH range. Rare Met. 2023, 42, 3638–3650.

[57]

Li, X. Y.; Pi, Y. H.; Xia, Q. B.; Li, Z.; Xiao, J. TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB. Appl. Catal. B: Environ. 2016, 191, 192–201.

[58]

Li, X. H.; Liu, Y.; Lin, H. Y.; Xu, N.; Zhang, Z.; Liu, G. C.; Wang, X. L. Solvent-induced two Co-based 3D metal-organic frameworks as platforms for the high degradation of rhodamine B under sunlight. Cryst. Growth Des. 2022, 22, 3845–3852.

File
0061_ESM.pdf (2.1 MB)
0061_ESM_1.cif (338.2 KB)
0061_ESM_Checkcif.pdf (114.1 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 December 2023
Revised: 05 February 2024
Accepted: 08 February 2024
Published: 04 March 2024
Issue date: September 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21901018, 22271021, and 22201021), the Natural Science Foundation and Education Department of Liaoning province (Nos. 2022-MS-373 and 2021-MS-312).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return