Journal Home > Volume 3 , Issue 3

Novel structures of polyoxometalates can be obtained by confining the synthons within specific nanospaces. This capability is what the confined synthetic method excels at. Within the cavity of {P8W48}, a novel multicomponent cluster comprising cationic FeIII and CeIII heterometals and PO43− oxyanions was successfully nucleated for the first time. Alongside examining the structure and composition of this host–guest assembly, thorough investigations were conducted into the enhanced peroxidase-like activity induced by the Fenton-active metallic species. Preliminary studies on a colorimetric sensor based on [{FeIII8CeIII4O2(OH)12(H2O)8(PO4)2}(P8W48O184)]26− yielded promising results, demonstrating its ability to detect ascorbic acid with high sensitivity and specificity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

From confined growth to enhanced peroxidase-like activity: Nucleation of a phosphate-mediated FeIII–CeIII–oxo cluster inside the {P8W48} nanoreactor

Show Author's information Hong-Xin Sheng1Bo-Yang Lin1Chao-Qin Chen1Jing Du2Peng Yang1 ( )
College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, China

Abstract

Novel structures of polyoxometalates can be obtained by confining the synthons within specific nanospaces. This capability is what the confined synthetic method excels at. Within the cavity of {P8W48}, a novel multicomponent cluster comprising cationic FeIII and CeIII heterometals and PO43− oxyanions was successfully nucleated for the first time. Alongside examining the structure and composition of this host–guest assembly, thorough investigations were conducted into the enhanced peroxidase-like activity induced by the Fenton-active metallic species. Preliminary studies on a colorimetric sensor based on [{FeIII8CeIII4O2(OH)12(H2O)8(PO4)2}(P8W48O184)]26− yielded promising results, demonstrating its ability to detect ascorbic acid with high sensitivity and specificity.

Keywords: X-ray diffraction, peroxidase-like activity, polyoxometalates, host–guest assembly, space-confined synthesis

References(69)

[1]

Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D. Linear complexions: Confined chemical and structural states at dislocations. Science 2015, 349, 1080–1083.

[2]

Muñoz-Santiburcio, D.; Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 2021, 121, 6293–6320.

[3]

Jin, Y. H.; Zhang, Q. Q.; Zhang, Y. Q.; Duan, C. Y. Electron transfer in the confined environments of metal-organic coordination supramolecular systems. Chem. Soc. Rev. 2020, 49, 5561–5600.

[4]

Wang, S. T.; Gao, X. H.; Hang, X. X.; Zhu, X. F.; Han, H. T.; Liao, W. P.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.

[5]

Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Fine size control of platinum on carbon nanotubes: From single atoms to clusters. Angew. Chem., Int. Ed. 2006, 45, 407–411.

[6]

Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60) n ]3− ( n = 1–9). ACS Nano 2018, 12, 2415–2425.

[7]

Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W.; Chen, L. J. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.

[8]

Ding, X. X.; Yuan, Y. Y.; Zhang, Y. G.; Jiang, Z. G.; Zhan, C. H. Chiral polyoxometalate-cyclodextrin frameworks via Mn-mediated assembly: Enhanced stability and catalytic activity. Polyoxometalates 2024, 3, 9140046.

[9]

Yang, P.; Zhao, W. L.; Shkurenko, A.; Belmabkhout, Y.; Eddaoudi, M.; Dong, X. C.; Alshareef, H. N.; Khashab, N. M. Polyoxometalate-cyclodextrin metal-organic frameworks: From tunable structure to customized storage functionality. J. Am. Chem. Soc. 2019, 141, 1847–1851.

[10]

Wang, Y. H.; Tong, K. W.; Chen, C. Q.; Du, J.; Yang, P. Weak interaction-steered evolution of polyoxovanadate-based metal-organic polyhedra from transformation via interlock to packing. Chin. Chem. Lett. 2024, 35, 109066.

[11]
Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983.
DOI
[12]
Pope, M. T.; Müller, A. Polyoxometalate Chemistry From Topology via Self-Assembly to Applications; Springer: Dordrecht, the Netherlands, 2001.
DOI
[13]

Liu, L. L.; Wang, Y. H.; Xiao, X. Y.; Tong, K. W.; Zhao, Y.; Chen, C. Q.; Du, J.; Yang, P. Engineering in amino acid-functionalized double-layer heteropolymolybdates: From structural control to catalytic activity. Rare Met. 2023, 42, 3345–3353.

[14]

Müller, A.; Krickemeyer, E.; Penk, M.; Rohlfing, R.; Armatage, A.; Bögge, H. Template-controlled formation of cluster shells or a type of molecular recognition: Synthesis of [HV22O54(ClO4)]6− and [H2V18O44(N3)]5−. Angew. Chem., Int. Ed. 1991, 30, 1674–1677.

[15]

Miras, H. N.; Cooper, G. J. T.; Long, D. L.; Bögge, H.; Müller, A.; Streb, C.; Cronin, L. Unveiling the transient template in the self-assembly of a molecular oxide nanowheel. Science 2010, 327, 72–74.

[16]

Renier, O.; Falaise, C.; Neal, H.; Kozma, K.; Nyman, M. Closing uranyl polyoxometalate capsules with bismuth and lead polyoxocations. Angew. Chem., Int. Ed. 2016, 55, 13480–13484.

[17]

Yang, P.; Kortz, U. Discovery and evolution of polyoxopalladates. Acc. Chem. Res. 2018, 51, 1599–1608.

[18]

Zhang, G. Y.; Wang, Y. F. Metal-oxide clusters with semiconductive heterojunction counterparts. Polyoxometalates 2023, 2, 9140020.

[19]

Wang, D.; Jiang, J.; Cao, M. Y.; Xie, S. S.; Li, Y. M.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode. Nano Res. 2022, 15, 3628–3637.

[20]

Liu, X. Y.; Cui, L. M.; Jiang, J.; Ji, F.; Zhao, J. W. A unique organic-inorganic hybrid FeIII-PrIII-included 2-germano-20-tungstate and its electrochemical biosensing properties. Chin. Chem. Lett. 2022, 33, 2630–2634.

[21]

Zhao, Y.; Li, K. L.; Du, J.; Chen, C. Q.; Chen, S.; Yang, P. Binary heterogroup-templated scaffolds of polyoxopalladates as pre-catalysts for plasma-assisted ammonia synthesis. ACS Appl. Mater. Interfaces 2023, 15, 43899–43908.

[22]

Yang, P.; Mahmoud, M. E.; Xiang, Y. X.; Lin, Z. G.; Ma, X.; Christian, J. H.; Bindra, J. K.; Kinyon, J. S.; Zhao, Y.; Chen, C. Q. et al. Host-guest chemistry in discrete polyoxo-12-palladate(II) cubes [MO8Pd12L8] n (M = ScIII, CoII, CuII, L = AsO43−; M = CdII, HgII, L = PhAsO32−): Structure, magnetism, and catalytic hydrogenation. Inorg. Chem. 2022, 61, 18524–18535.

[23]

Yang, P.; Ma, T.; Lang, Z. L.; Misirlic-Dencic, S.; Isakovic, A. M.; Bényei, A.; Čolović, M. B.; Markovic, I.; Krstić, D. Z.; Poblet, J. M. et al. Tetravalent metal ion guests in polyoxopalladate chemistry: Synthesis and anticancer activity of [MO8Pd12(PO4)8]12− (M = SnIV, PbIV). Inorg. Chem. 2019, 58, 11294–11299.

[24]
Contant, R.; Tézé, A. A new crown heteropolyanion K28Li5H7P8W48O184 · 92H2O: Synthesis, structure, and properties. Inorg. Chem. 1985 , 24, 4610–4614.
DOI
[25]

Mal, S. S.; Kortz, U. The wheel-shaped Cu20 tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− ion. Angew. Chem., Int. Ed. 2005, 44, 3777–3780.

[26]

Mal, S. S.; Dickman, M. H.; Kortz, U.; Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Müller, A.; Nellutla, S.; Kaur, N. et al. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster. Chem.—Eur. J. 2008, 14, 1186–1195.

[27]

Goura, J.; Sundar, A.; Bassil, B. S.; Ćirić-Marjanović, G.; Bajuk-Bogdanović, D.; Kortz, U. Peroxouranyl-containing W48 wheel: Synthesis, structure, and detailed infrared and Raman spectroscopy study. Inorg. Chem. 2020, 59, 16789–16794.

[28]

Müller, A.; Pope, M. T.; Todea, A. M.; Bögge, H.; Van Slageren, J.; Dressel, M.; Gouzerh, P.; Thouvenot, R.; Tsukerblat, B.; Bell, A. Metal-oxide-based nucleation process under confined conditions: Two mixed-valence v6-type aggregates closing the W48 wheel-type cluster cavities. Angew. Chem., Int. Ed. 2007, 46, 4477–4480.

[29]

Sousa, F. L.; Bögge, H.; Merca, A.; Gouzerh, P.; Thouvenot, R.; Müller, A. Vectorial growth/regulations in a {P8W48}-type polyoxotungstate compartment: Trapped unusual molybdenum oxide acts as a handle. Chem. Commun. 2009, 7491–7493.

[30]

Mitchell, S. G.; Streb, C.; Miras, H. N.; Boyd, T.; Long, D. L.; Cronin, L. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat. Chem. 2010, 2, 308–312.

[31]

Boyd, T.; Mitchell, S. G.; Gabb, D.; Long, D. L.; Song, Y. F.; Cronin, L. POMzites: A family of zeolitic polyoxometalate frameworks from a minimal building block library. J. Am. Chem. Soc. 2017, 139, 5930–5938.

[32]

Zhan, C. H.; Zheng, Q.; Long, D. L.; Vilà-Nadal, L.; Cronin, L. Controlling the reactivity of the [P8W48O184]40− inorganic ring and its assembly into POMZite inorganic frameworks with silver ions. Angew. Chem., Int. Ed. 2019, 58, 17282–17286.

[33]

Koizumi, Y.; Yonesato, K.; Yamaguchi, K.; Suzuki, K. Ligand-protecting strategy for the controlled construction of multinuclear copper cores within a ring-shaped polyoxometalate. Inorg. Chem. 2022, 61, 9841–9848.

[34]

Yonesato, K.; Yanai, D.; Yamazoe, S.; Yokogawa, D.; Kikuchi, T.; Yamaguchi, K.; Suzuki, K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 2023, 15, 940–947.

[35]

Pichon, C.; Mialane, P.; Dolbecq, A.; Marrot, J.; Rivière, E.; Keita, B.; Nadjo, L.; Sécheresse, F. Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates. Inorg. Chem. 2007, 46, 5292–5301.

[36]

Zimmermann, M.; Belai, N.; Butcher, R. J.; Pope, M. T.; Chubarova, E. V.; Dickman, M. H.; Kortz, U. New lanthanide-containing polytungstates derived from the cyclic P8W48 anion: {Ln4(H2O)28[K P8W48O184(H4W4O12)2Ln2(H2O)10]13−} x , Ln = La, Ce, Pr, Nd. Inorg. Chem. 2007, 46, 1737–1740.

[37]

Korenev, V. S.; Floquet, S.; Marrot, J.; Haouas, M.; Mbomekallé, I. M.; Taulelle, F.; Sokolov, M. N.; Fedin, V. P.; Cadot, E. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: Structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30− and studies in solution. Inorg. Chem. 2012, 51, 2349–2358.

[38]

Yang, P.; Alsufyani, M.; Emwas, A. H.; Chen, C. Q.; Khashab, N. M. Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: Enhanced proton conductivity via metal-Oxo cluster within cluster assemblies. Angew. Chem., Int. Ed. 2018, 57, 13046–13051.

[39]

Yu, X. S.; Cui, H. J.; Wang, Q. Z.; Li, J. S.; Su, F.; Zhang, L. C.; Sang, X. J.; Zhu, Z. M. Construction and visible-light photocatalytic performance of carboxyethyltin/transition metal-functionalized wheel-like tungstophosphates. Appl. Organomet. Chem. 2020, 34, e5720.

[40]

Kuznetsova, A. A.; Volchek, V. V.; Yanshole, V. V.; Fedorenko, A. D.; Kompankov, N. B.; Kokovkin, V. V.; Gushchin, A. L.; Abramov, P. A.; Sokolov, M. N. Coordination of Pt(IV) by {P8W48} macrocyclic inorganic cavitand: Structural, solution, and electrochemical studies. Inorg. Chem. 2022, 61, 14560–14567.

[41]

Yi, X. F.; Izarova, N. V.; Kögerler, P. Organoarsonate functionalization of heteropolyoxotungstates. Inorg. Chem. 2017, 56, 13822–13828.

[42]

Wang, K. Y.; Zhang, S.; Ding, D.; Ma, T.; Kortz, U.; Wang, C. [(SeO)4P8W48O184]32−: A tetraselenite-embedded derivative of the cyclic 48-tungsto-8-phosphate. Eur. J. Inorg. Chem. 2019, 2019, 512–516.

[43]

Niu, Y. L.; Ding, Y.; Sheng, H. X.; Sun, S.; Chen, C. Q.; Du, J.; Zang, H. Y.; Yang, P. Space-confined nucleation of semimetal-Oxo clusters within a [H7P8W48O184]33− macrocycle: Synthesis, structure, and enhanced proton conductivity. Inorg. Chem. 2022, 61, 21024–21034.

[44]

Reinoso, S. Heterometallic 3d-4f polyoxometalates: Still an incipient field. Dalton Trans. 2011, 40, 6610–6615.

[45]

Zhao, J. W.; Li, Y. Z.; Chen, L. J.; Yang, G. Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Comm. 2016, 52, 4418–4445.

[46]

Das, V.; Kaushik, R.; Hussain, F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications. Coord. Chem. Rev. 2020, 413, 213271.

[47]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[48]
Contant, R.; Klemperer, W. G.; Yaghi, O. Potassium octadecatungstodiphosphates(V) and related lacunary compounds. In Inorganic Syntheses; Ginsberg, A. P. (Ed.); John Wiley & Sons, 1990; Vol. 27, PP 110–111
DOI
[49]

Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B 1985, B41, 244–247.

[50]

Ismail, A. H.; Bassil, B. S.; Yassin, G. H.; Keita, B.; Kortz, U. {W48} ring opening: Fe16-containing, Ln4-stabilized 49-tungsto-8-phosphate open wheel [Fe16O2(OH)23(H2O)9(P8W49O189)Ln4(H2O)20]11−. Chem.— Eur. J. 2012, 18, 6163–6166.

[51]

Xue, H.; Zhang, Z.; Pan, R.; Yang, B. F.; Liu, H. S.; Yang, G. Y. Supramolecular nanotubes constructed from 3d-4f heterometallic sandwiched polyoxotungstate dimers. CrystEngComm 2016, 18, 4643–4650.

[52]

Chen, W. L.; Li, Y. G.; Wang, Y. H.; Wang, E. B.; Zhang, Z. M. A new polyoxometalate-based 3d-4f heterometallic aggregate: A model for the design and synthesis of new heterometallic clusters. Dalton Trans. 2008, 865–867.

[53]

Ma, X.; Song, K. F.; Cao, J.; Gong, P. J.; Li, H. L.; Chen, L. J.; Zhao, J. W. Synthesis, structure and electrochemical properties of a FeIII-CeIII heterometallic sandwich-type tungstoantimonate with novel 2-D infinite structure [Ce(H2O)8][Ce(H2O)6][Fe4(H2O)10(B-β-SbW9O33)2]·16H2O. Inorg. Chem. Commun. 2015, 60, 65–70.

[54]
Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 5th ed.; Wiley and Sons: New York, 1997.
[55]

Azambre, B.; Hudson, M. J.; Heintz, O. Topotactic redox reactions of copper(II) and iron(III) salts within VO x nanotubes. J. Mater. Chem. 2003, 13, 385–393.

[56]

Park, P. W.; Ledford, J. S. Effect of crystallinity on the photoreduction of cerium oxide: A study of CeO2 and Ce/Al2O3 catalysts. Langmuir 1996, 12, 1794–1799.

[57]

Golunski, S. E.; Nevell, T. G.; Pope, M. I. Thermal stability and phase transitions of the oxides of antimony. Thermochim. Acta 1981, 51, 153–168.

[58]

Yamase, T. Photo-and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–326.

[59]

Cheng, Y.; Qin, K. J.; Zang, D. J. Polyoxometalates based nanocomposites for bioapplications. Rare Met. 2023, 42, 3570–3600.

[60]

Tang, Z. M.; Zhao, P. R.; Wang, H.; Liu, Y. Y.; Bu, W. B. Biomedicine meets Fenton chemistry. Chem. Rev. 2021, 121, 1981–2019.

[61]

Li, D.; Han, H. Y.; Wang, Y. H.; Wang, X.; Li, Y. G.; Wang, E. B. Modification of tetranuclear zirconium-substituted polyoxometalates-syntheses, structures, and peroxidase-like catalytic activities. Eur. J. Inorg. Chem. 2013, 2013, 1926–1934.

[62]

Li, X.; Zhou, K. F.; Tong, Z. B.; Yang, J. B.; Sheng, N.; Li, J. S.; Sha, J. Q. Keggin polyoxometalates based hybrid compounds containing helix/nanocages for colorimetric biosensing. J. Solid State Chem. 2018, 265, 372–380.

[63]

Xu, Y. X.; Li, P. P.; Hu, X. J.; Chen, H. Y.; Tang, Y.; Zhu, Y.; Zhu, X. H.; Zhang, Y. Y.; Liu, M. L.; Yao, S. Z. Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe2+ ions. ACS Appl. Nano Mater. 2021, 4, 8302–8313.

[64]

Liu, L.; Sun, C. Q.; Yang, J.; Shi, Y.; Long, Y. J.; Zheng, H. Z. Fluorescein as a visible-light-induced oxidase mimic for signal-amplified colorimetric assay of carboxylesterase by an enzymatic cascade reaction. Chem.—Eur. J. 2018, 24, 6148–6154.

[65]

Walling, C.; Goosen, A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J. Am. Chem. Soc. 1973, 95, 2987–2991.

[66]

He, J.; Yang, X. F.; Men, B.; Wang, D. S. Interfacial mechanisms of heterogeneous fenton reactions catalyzed by iron-based materials: A review. J. Environ. Sci. 2016, 39, 97–109.

[67]

Xu, T. Y.; Zhu, R. L.; Zhu, G. Q.; Zhu, J. X.; Liang, X. L.; Zhu, Y. P.; He, H. P. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH. Appl. Catal. B Environ. 2017, 212, 50–58.

[68]

Bokare, A. D.; Choi, W. Review of iron-free fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.

[69]

Yang, Q.; Li, C. Y.; Li, J. H.; Arabi, M.; Wang, X. Y.; Peng, H. L.; Xiong, H.; Choo, J.; Chen, L. X. Multi-emitting fluorescence sensor of MnO2-OPD-QD for the multiplex and visual detection of ascorbic acid and alkaline phosphatase. J. Mater. Chem. A 2020, 8, 5554–5561.

File
0060_ESM.pdf (975.2 KB)
0060_ESM_KLi_1.cif (3 MB)
0060_ESM_checkcif-KLi_1.pdf (136.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 December 2023
Revised: 23 January 2024
Accepted: 31 January 2024
Published: 04 March 2024
Issue date: September 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was financially supported by the Natural Science Foundation of Hunan Province (No. 2022JJ20007), the Science and Technology Innovation Program of Hunan Province (No. 2022RC1115), and the Student Innovation Training (SIT) program of Hunan Province (No. S202210532256).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return