Journal Home > Volume 3 , Issue 3

In the realm of pharmaceutical drug delivery and bioimaging, the innovative design of membrane transporters is crucial. This highlight article focuses on the recent collaborative study published in Advanced Materials (DOI: 10.1002/adma.202309219) between the research groups of Nau and Rompel, investigating Keggin and Anderson-Evans type polyoxometalates (POMs) as superchaotropic carriers in both model membranes and live cells under physiological conditions. The Kegginoidal POM carriers, at concentrations as low as 5 µM, successfully transport various oligo- and polypeptides, surpassing the performance of boron clusters (DOI: 10.1038/s41586-022-04413-w).


menu
Abstract
Full text
Outline
About this article

Superchaotropic polyoxometalates as membrane carriers

Show Author's information Aleksandar Kondinski ( )
Cambridge Centre for Advanced Research and Education in Singapore, 1 Create Way, CREATE Tower, #05-05, Singapore 138602, Singapore

Abstract

In the realm of pharmaceutical drug delivery and bioimaging, the innovative design of membrane transporters is crucial. This highlight article focuses on the recent collaborative study published in Advanced Materials (DOI: 10.1002/adma.202309219) between the research groups of Nau and Rompel, investigating Keggin and Anderson-Evans type polyoxometalates (POMs) as superchaotropic carriers in both model membranes and live cells under physiological conditions. The Kegginoidal POM carriers, at concentrations as low as 5 µM, successfully transport various oligo- and polypeptides, surpassing the performance of boron clusters (DOI: 10.1038/s41586-022-04413-w).

Keywords: polyoxometalates, chaotropic carriers, Kegginoids, membrane transport

References(35)

[1]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[2]
Wei, Y. G. Polyoxometalates: An interdisciplinary journal focused on all aspects of polyoxometalates. Polyoxometalates 2022 , 1, 9140014.
DOI
[3]

Folin, O.; Wu, H. A system of blood analysis. J. Biol. Chem. 1919, 38, 81–110.

[4]

Wu, H. Contribution to the chemistry of phosphomolybdic acids, phosphotungstic acids, and allied substances. J. Biol. Chem. 1920, 43, 189–220.

[5]

Aureliano, M.; Mitchell, S. G.; Yin, P. C. Editorial: Emerging polyoxometalates with biological, biomedical, and health applications. Front. Chem. 2022, 10, 977317.

[6]

Arefian, M.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins. Dalton Trans. 2017, 46, 6812–6829.

[7]

Gumerova, N. I.; Rompel, A. Polyoxometalates in solution: Speciation under spotlight. Chem. Soc. Rev. 2020, 49, 7568–7601.

[8]

Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond charge balance: Counter-cations in polyoxometalate chemistry. Angew. Chem., Int. Ed. 2020, 59, 596–612.

[9]

Matile, S.; Jentzsch, A. V.; Montenegro, J.; Fin, A. Recent synthetic transport systems. Chem. Soc. Rev. 2011, 40, 2453–2474.

[10]

Hu, X. Y.; Guo, D. S. Superchaotropic boron clusters as membrane carriers for the transport of hydrophilic cargos. Angew. Chem., Int. Ed. 2022, 61, e202204979.

[11]

Barba-Bon, A.; Salluce, G.; Lostalé-Seijo, I.; Assaf, K. I.; Hennig, A.; Montenegro, J.; Nau, W. M. Boron clusters as broadband membrane carriers. Nature 2022, 603, 637–642.

[12]

Chen, Y.; Barba-Bon, A.; Grüner, B.; Winterhalter, M.; Aksoyoglu, M. A.; Pangeni, S.; Ashjari, M.; Brix, K.; Salluce, G.; Folgar-Cameán, Y. et al. Metallacarborane cluster anions of the cobalt bisdicarbollide-type as chaotropic carriers for transmembrane and intracellular delivery of cationic peptides. J. Am. Chem. Soc. 2023, 145, 13089–13098.

[13]

Hofmeister, F. Zur lehre von der wirkung der salze. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260.

[14]

Liu, T. B.; Diemann, E.; Li, H. L.; Dress, A. W. M.; Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 2003, 426, 59–62.

[15]

Chu, Y.; Chen, J. H.; Haso, F.; Gao, Y. Y.; Szymanowski, J. E. S.; Burns, P. C.; Liu, T. B. Expanding the schulze-hardy rule and the hofmeister series to nanometer-scaled hydrophilic macroions. Chem.—Eur. J. 2018, 24, 5479–5483.

[16]

Assaf, K. I.; Nau, W. M. The chaotropic effect as an assembly motif in chemistry. Angew. Chem., Int. Ed. 2018, 57, 13968–13981.

[17]

Naskar, B.; Diat, O.; Nardello-Rataj, V.; Bauduin, P. Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces. J. Phys. Chem. C 2015, 119, 20985–20992.

[18]

Assaf, K. I.; Ural, M. S.; Pan, F. F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W. M. Water structure recovery in chaotropic anion recognition: High-affinity binding of dodecaborate clusters to γ-cyclodextrin. Angew. Chem., Int. Ed. 2015, 54, 6852–6856.

[19]

Buchecker, T.; Schmid, P.; Renaudineau, S.; Diat, O.; Proust, A.; Pfitzner, A.; Bauduin, P. Polyoxometalates in the Hofmeister series. Chem. Commun. 2018, 54, 1833–1836.

[20]

Khlifi, S.; Marrot, J.; Haouas, M.; Shepard, W. E.; Falaise, C.; Cadot, E. Chaotropic effect as an assembly motif to construct supramolecular cyclodextrin-polyoxometalate-based frameworks. J. Am. Chem. Soc. 2022, 144, 4469–4477.

[21]

Falaise, C.; Khlifi, S.; Bauduin, P.; Schmid, P.; Shepard, W.; Ivanov, A. A.; Sokolov, M. N.; Shestopalov, M. A.; Abramov, P. A.; Cordier, S. et al. “Host in Host” supramolecular core-shell type systems based on giant ring-shaped polyoxometalates. Angew. Chem., Int. Ed. 2021, 60, 14146–14153.

[22]

Barba-Bon, A.; Gumerova, N. I.; Tanuhadi, E.; Ashjari, M.; Chen, Y.; Rompel, A.; Nau, W. M. All-inorganic polyoxometalates act as superchaotropic membrane carriers. Adv. Mater. 2024, 36, 2309219.

[23]

Barba-Bon, A.; Pan, Y. C.; Biedermann, F.; Guo, D. S.; Nau, W. M.; Hennig, A. Fluorescence monitoring of peptide transport pathways into large and giant vesicles by supramolecular host-dye reporter pairs. J. Am. Chem. Soc. 2019, 141, 20137–20145.

[24]
Kondinski, A. Computational modelling of isomeric polyoxometalates. In SPR - Chemical Modelling; Springborg, M.; Joswig, J. O., Eds.; Wuppertal University: Germany, 2021; pp 39–71.
DOI
[25]

Kondinski, A.; Parac-Vogt, T. N. Keggin structure, quō vādis? Front. Chem. 2018, 6, 346.

[26]

Zhang, Z. M.; Yao, S.; Li, Y. G.; Han, X. B.; Su, Z. M.; Wang, Z. S.; Wang, E. B. Inorganic crown ethers: Sulfate-based preyssler polyoxometalates. Chem.—Eur. J. 2012, 18, 9184–9188.

[27]

Long, D. L.; Abbas, H.; Kögerler, P.; Cronin, L. Confined electron-transfer reactions within a molecular metal oxide “Trojan Horse”. Angew. Chem., Int. Ed. 2005, 44, 3415–3419.

[28]

Himeno, S.; Takamoto, M.; Hoshiba, M.; Higuchi, A.; Hashimoto, M. Preparation and characterization of an α-Keggin-type [SW12O40]2− complex. Bull. Chem. Soc. Japan 2004, 77, 519–524.

[29]

Yamazaki, Y.; Yamashita, K. I.; Tani, Y.; Aoyama, T.; Ogawa, T. Structure determination and negative differential resistance of tetraarylporphyrin/polyoxometalate 2:1 complexes. J. Mater. Chem. C 2020, 8, 14423–14430.

[30]
Saier, M. H. Jr.; Reddy, V. S.; Moreno-Hagelsieb, G.; Hendargo, K. J.; Zhang, Y. C.; Iddamsetty, V.; Lam, K. J. K.; Tian, N.; Russum, S.; Wang, J. N. et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res. 2021 , 49, D461–D467.
DOI
[31]

Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

[32]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[33]

Falaise, C.; Khlifi, S.; Bauduin, P.; Schmid, P.; Degrouard, J.; Leforestier, A.; Shepard, W.; Marrot, J.; Haouas, M.; Landy, D. et al. Cooperative self-assembly process involving giant toroidal polyoxometalate as a membrane building block in nanoscale vesicles. J. Am. Chem. Soc. 2024, 146, 1501–1511.

[34]

Zhao, H. Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. J. Chem. Technol. Biotechnol. 2006, 81, 877–891.

[35]

Liu, Q. Q.; Cui, Y. Z.; Zhu, L. J.; Cheng, D. M.; Wang, C.; Lu, S. Q.; Li, B.; Chen, X. Y.; Zang, H. Y. Ionic liquid-mediated PEO-based solid-state electrolyte membrane modified with Dawson-type polyoxometalates. Polyoxometalates 2023, 2, 9140036.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 November 2023
Revised: 15 January 2024
Accepted: 23 January 2024
Published: 06 February 2024
Issue date: September 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

A. K. thanks the University of Cambridge and Cambridge CARES for their research support.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return