Journal Home > Volume 3 , Issue 3

Due to the powerful quantum confined space effects and multiple modes of small atomic sizes, metal nanoclusters (NCs) like thiolate-protected noble metals, such as silver (Ag) and gold (Au), which have a core sizes less than 3 nm, have developed a class of "metallic molecules" with multiple optical, magnetic, and electronic properties. To find a well-defined nanocatalysts, especially ligand-passivated metal NCs, great strides have been achieved in the efficient synthesis of atomically precise nanoparticles. Methods of synthesis such as bottom-up growth, top-down approach, ligand engineering, and interconversion system, are mentioned in this overview. Such clearly defined metal NCs have demonstrated considerable promise in catalysis research and have evolved into a distinct class of model catalysts. Focusing on the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER), this article attempts to outline current developments in NCs of molecular metals employed in electrocatalytic reactions. The paper highlights the relationship between the structure and performance of the catalytic mechanism and examines the potential effects of metal cluster sizes, metal core structures, charges, ligands, and metal–ligand binding patterns on their electrocatalytic activity. Future research opportunities and challenges are also proposed.


menu
Abstract
Full text
Outline
About this article

Advances in coinage metal nanoclusters: From synthesis strategies to electrocatalytic performance

Show Author's information Piracha Sanwal1,2,§Ali Raza3,§Yu-Xin Miao1( )Brock Lumbers4( )Gao Li1,2( )
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, China Academy of Sciences, Dalian 116023, China
Department of Physics "Ettore Pancini", University of Naples Federico II, Piazzale Tecchio, 80, 80125 Naples, Italy
Faculty of Technology & Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany

§ Piracha Sanwal and Ali Raza contributed equally to this work.

Abstract

Due to the powerful quantum confined space effects and multiple modes of small atomic sizes, metal nanoclusters (NCs) like thiolate-protected noble metals, such as silver (Ag) and gold (Au), which have a core sizes less than 3 nm, have developed a class of "metallic molecules" with multiple optical, magnetic, and electronic properties. To find a well-defined nanocatalysts, especially ligand-passivated metal NCs, great strides have been achieved in the efficient synthesis of atomically precise nanoparticles. Methods of synthesis such as bottom-up growth, top-down approach, ligand engineering, and interconversion system, are mentioned in this overview. Such clearly defined metal NCs have demonstrated considerable promise in catalysis research and have evolved into a distinct class of model catalysts. Focusing on the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER), this article attempts to outline current developments in NCs of molecular metals employed in electrocatalytic reactions. The paper highlights the relationship between the structure and performance of the catalytic mechanism and examines the potential effects of metal cluster sizes, metal core structures, charges, ligands, and metal–ligand binding patterns on their electrocatalytic activity. Future research opportunities and challenges are also proposed.

Keywords: size effect, electrocatalysis, metal nanoclusters, synthesis strategies

References(127)

[1]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[2]

Zhao, Y.; Zhuang, S. L.; Liao, L. W.; Wang, C. M.; Xia, N.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Wu, Z. K. A dual purpose strategy to endow gold nanoclusters with both catalysis activity and water solubility. J. Am. Chem. Soc. 2020, 142, 973–977.

[3]

Li, Z. W.; Zhang, J. J.; Li, G.; Puddephatt, R. J. Self-assembly of the smallest and tightest molecular trefoil knot. Nat. Commun. 2024, 15, 154.

[4]

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 20202020, 13, 939–946.

[5]

Qin, Z. X.; Wang, J. H.; Sharma, S.; Malola, S.; Wu, K. F.; Häkkinen, H.; Li, G. Photo-induced cluster-to-cluster transformation of [Au37- x Ag x (PPh3)13Cl10]3+ into [Au25- y Ag y (PPh3)10Cl8]+: Fragmentation of a trimer of 8-electron superatoms by light. J. Phys. Chem. Lett. 2021, 12, 10920–10926.

[6]

Yuan, S. F.; He, R. L.; Han, X. S.; Wang, J. Q.; Guan, Z. J.; Wang, Q. M. Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 14345–14349.

[7]

Cai, X.; Hu, W. G.; Xu, S.; Yang, D.; Chen, M. Y.; Shu, M.; Si, R.; Ding, W. P.; Zhu, Y. Structural relaxation enabled by internal vacancy available in a 24-atom gold cluster reinforces catalytic reactivity. J. Am. Chem. Soc. 2020, 142, 4141–4153.

[8]

Kulkarni, V. K.; Khiarak, B. N.; Takano, S.; Malola, S.; Albright, E. L.; Levchenko, T. I.; Aloisio, M. D.; Dinh, C. T.; Tsukuda, T.; Häkkinen, H. et al. N-heterocyclic carbene-stabilized hydrido Au24 nanoclusters: Synthesis, structure, and electrocatalytic reduction of CO2. J. Am. Chem. Soc. 2022, 144, 9000–9006.

[9]

Li, S. T.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M. K.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 6351–6356.

[10]

Qin, Z. X.; Zhang, J. W.; Wan, C. Q.; Liu, S.; Abroshan, H.; Jin, R. C.; Li, G. Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nat. Commun. 2020, 11, 6019.

[11]

Li, Z. W.; Xie, Y.; Gao, J. X.; Zhang, X. K.; Zhang, J.; Liu, Y.; Li, G. The promotional effect of multiple active sites on Fe-based oxygen reduction electrocatalysts for a zinc-air battery. J. Mater. Chem. A 2023, 11, 26573–26579.

[12]

Zhang, J. J.; Raza, A.; Zhao, Y.; Guo, S.; Babar, Z. U. D.; Xu, L. L.; Cao, C. H.; Li, G. Intrinsically robust cubic MnCoO x solid solution: Achieving high activity for sustainable acidic water oxidation. J. Mater. Chem. A 2023, 11, 25345–25355.

[13]

Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.

[14]

Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni-MoC x : An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res. 2023, 16, 8919–8928.

[15]

Du, S. C.; Ren, Z. Y.; Qu, Y.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanosheets as a high-performance catalyst for oxygen evolution proceeding via a double two-electron process. Chem. Commun. 2016, 52, 6705–6708.

[16]

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]-: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

[17]

Zhou, Y.; Zeng, H. C. Metal-hydroxide and gold-nanocluster interfaces: Enhancing catalyst activity and stability for oxygen evolution reaction. J. Phys. Chem. C 2016, 120, 29348–29357.

[18]

Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

[19]

Kwak, K.; Azad, U. P.; Choi, W.; Pyo, K.; Jang, M.; Lee, D. Efficient oxygen reduction electrocatalysts based on gold nanocluster-graphene composites. ChemElectroChem 2016, 3, 1253–1260.

[20]

He, Z. B.; Yang, Y.; Zou, J. F.; You, Q.; Feng, L.; Li, M. B.; Wu, Z. K. Partial phosphorization: A strategy to improve some performance(s) of thiolated metal nanoclusters without notable reduction of stability. Chem.—Eur. J. 2022, 28, e202200212.

[21]

Goliaei, E. M. Tuning the catalytic activity of Ag7Au6 cluster for oxygen reduction reaction via support interactions. J. Mol. Graph. Model. 2023, 118, 108355.

[22]

Huang, B. Y.; Zhao, X. M.; Pei, Y. First principles calculation study of single transition metal atom grafted Au25 as efficient electrocatalysts for OER and ORR. Mol. Catal. 2023, 540, 113030.

[23]

Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Chen, W. Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem. Commun. 2014, 50, 8464–8467.

[24]

Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

[25]

Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent Au13 superatoms protected by n-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 14997–15002.

[26]

Zhang, J. W.; Zhou, Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J. L.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798.

[27]

Shi, Q. Q.; Zhang, Y. F.; Li, Z. W.; Han, Z. K.; Xu, L. L.; Baiker, A.; Li, G. Morphology effects in MnCeO x solid solution-catalyzed NO reduction with CO: Active sites, water tolerance, and reaction pathway. Nano Res. 2023, 16, 6951–6959.

[28]

Qin, Z. X.; Li, Z. W.; Sharma, S.; Peng, Y. W.; Jin, R. C.; Li, G. Self-assembly of silver clusters into one- and two-dimensional structures and highly selective methanol sensing. Research 2022, 2022, 0018.

[29]

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of A thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

[30]

Gao, M.; Nakahara, M.; Lyalin, A.; Taketsugu, T. Catalytic activity of gold clusters supported on the h-BN/Au(111) surface for the hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 1334–1344.

[31]

Cao, Y. H.; Su, Y.; Xu, L. L.; Yang, X. H.; Han, Z. K.; Cao, R.; Li, G. Oxygen vacancy-rich amorphous FeNi hydroxide nanoclusters as an efficient electrocatalyst for water oxidation. J. Energy Chem., 2022, 71, 167–173.

[32]

Zhang, X. B.; Li, Z. M.; Pei, W.; Li, G.; Liu, W.; Du, P. F.; Wang, Z.; Qin, Z. X.; Qi, H. F.; Liu, X. Y. et al. Crystal-phase-mediated restructuring of Pt on TiO2 with tunable reactivity: Redispersion versus reshaping. ACS Catal. 2022, 12, 3634–3643.

[33]

Datta, K. K. R.; Reddy, B. V. S.; Ariga, K.; Vinu, A. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew. Chem., Int. Ed. 2010, 49, 5961–5965.

[34]

Shi, Q. Q.; Qin, Z. X.; Sharma, S.; Li, G. Recent progress in heterogeneous catalysis by atomically and structurally precise metal nanoclusters. Chem. Rec. 2021, 21, 879–892.

[35]

Zhao, J. B.; Li, Q.; Zhuang, S. L.; Song, Y. B.; Morris, D. J.; Zhou, M.; Wu, Z. K.; Zhang, P.; Jin, R. C. Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J. Phys. Chem. Lett. 2018, 9, 7173–7179.

[36]

Das, A.; Li, T.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Nonsuperatomic [Au23(SC6H11)16]- nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 2013, 135, 18264–18267.

[37]

Wang, Y. A.; Nieto-Ortega, B.; Bürgi, T. Transformation from [Au25(SCH2CH2CH2CH3)18]0 to Au28(SCH2CH(CH3)Ph)21 gold nanoclusters: Gentle conditions is enough. Chem. Commun. 2019, 55, 14914–14917.

[38]

Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

[39]

Yao, Q. F.; Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, C.; Xie, J. P.; Lee, J. Y. Assembly of nanoions via electrostatic interactions: Ion-like behavior of charged noble metal nanoclusters. Sci. Rep. 2014, 4, 3848.

[40]

Udaya Bhaskara Rao, T.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem., Int. Ed. 2010, 49, 3925–3929.

[41]

Zhang, Y. F.; Zhang, J. J.; Li, Z. W.; Qin, Z. X.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24.

[42]
Liu, Z. Y.; Qin, Z. X.; Cui, C. N.; Luo, Z. X.; Yang, B.; Jiang, Y.; Lai, C.; Wang, Z. P.; Wang, X. L.; Fang, X. et al. In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Sci. China Chem. 2022 , 65, 1196–1203.
DOI
[43]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[44]

Qin, Z. X.; Sharma, S.; Wan, C. Q.; Malola, S.; Xu, W. W.; Häkkinen, H.; Li, G. A Homoleptic alkynyl-ligated [Au13Ag16L24]3- cluster as a catalytically active eight-electron superatom. Angew. Chem., Int. Ed. 2021, 60, 970–975.

[45]

Li, M. B.; Tian, S. K.; Wu, Z. K.; Jin, R. C. Peeling the core-shell Au25 nanocluster by reverse ligand-exchange. Chem. Mater. 2016, 28, 1022–1025.

[46]

Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Chen, T.; Wang, S. X.; Yu, H. Z.; Li, X. W.; Zhu, M. Z . In situ two-phase ligand exchange: A new method for the synthesis of alloy nanoclusters with precise atomic structures. J. Am. Chem. Soc. 2017, 139, 5668–5671.

[47]

Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

[48]

Yao, C. H.; Lin, Y. J.; Yuan, J. Y.; Liao, L. W.; Zhu, M.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Mono-cadmium vs mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350–15353.

[49]

Liu, Z. H.; Wu, Z. N.; Yao, Q. F.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today 2021, 36, 101053.

[50]

Dou, X. Y.; Chen, X. Y.; Zhu, H. G.; Liu, Y.; Chen, D. Y.; Yuan, X.; Yao, Q. F.; Xie, J. P. Water-soluble metal nanoclusters: Recent advances in molecular-level exploration and biomedical applications. Dalton Trans. 2019, 48, 10385–10392.

[51]

Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun. 2018, 9, 744.

[52]

Zhang, J. J.; Wang, H. D.; Zhang, Y. F.; Li, Z. W.; Yang, D. Y.; Zhang, D. H.; Tsukuda, T.; Li, G. A revealing insight into gold cluster photocatalysts: Visible versus (vacuum) ultraviolet light. J. Phys. Chem. Lett. 2023, 14, 4179–4184.

[53]

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem. 2014, 126, 4711–4715.

[54]

Chen, T. K.; Fung, V.; Yao, Q. F.; Luo, Z. T.; Jiang, D. E.; Xie, J. P. Synthesis of water-soluble [Au25(SR)18] using a stoichiometric amount of NaBH4. J. Am. Chem. Soc. 2018, 140, 11370–11377.

[55]

Yu, Y.; Chen, X.; Yao, Q. F.; Yu, Y.; Yan, N.; Xie, J. P. Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

[56]

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

[57]

Van Der Linden, M.; Van Bunningen, A. J.; Amidani, L.; Bransen, M.; Elnaggar, H.; Glatzel, P.; Meijerink, A.; De Groot, F. M. F. Single Au atom doping of silver nanoclusters. ACS Nano 2018, 12, 12751–12760.

[58]

Li, W. L.; Liu, C.; Abroshan, H.; Ge, Q. J.; Yang, X. J.; Xu, H. Y.; Li, G. Catalytic CO oxidation using bimetallic M x Au25- x clusters: A combined experimental and computational study on doping effects. J. Phys. Chem. C 2016, 120, 10261–10267.

[59]

Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.

[60]

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

[61]

Yao, C. H.; Chen, J. S.; Li, M. B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281–1287.

[62]

Zhou, Y.; Liao, L. W.; Zhuang, S. L.; Zhao, Y.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Xia, N.; Wu, Z. K. Traceless removal of two kernel atoms in a gold nanocluster and its impact on photoluminescence. Angew. Chem., Int. Ed. 2021, 60, 8668–8672.

[63]
Li, Z. W.; Xu, L. L.; Babar, Z. U. D.; Raza, A.; Zhang, Y. F.; Gu, X. R.; Miao, Y. X.; Zhao, Z.; Li, G. Fabrication of MXene-Bi2WO6 heterojunction by Bi2Ti2O7 hinge for extraordinary LED-light-driven photocatalytic performance. Nano Res., in press, DOI: 10.1007/s12274-023-6408-1.
DOI
[64]

Chen, Y. D.; Li, Y.; Chen, W.; Xu, W. W.; Han, Z. K.; Waheed, A.; Ye, Z. B.; Li, G.; Baiker, A. Continuous dimethyl carbonate synthesis from CO2 and methanol over Bi x Ce1− x O δ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway. Nano Res. 2022, 15, 1366–1374.

[65]

Wang, Y. H.; Jiang, Q. K.; Xu, L. L.; Han, Z. K.; Guo, S.; Li, G.; Baiker, A. Effect of configuration of copper oxide-ceria catalysts in NO reduction with CO: Superior performance of copper-ceria solid solution. ACS Appl. Mater. Interfaces 2021, 13, 61078–61087.

[66]

Zou, X. J.; He, S. P.; Kang, X.; Chen, S.; Yu, H. Z.; Jin, S.; Astruc, D.; Zhu, M. Z. New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chem. Sci. 2021, 12, 3660–3667.

[67]

He, L. Z.; Dong, T. T. Progress in controlling the synthesis of atomically precise silver nanoclusters. CrystEngComm 2021, 23, 7369–7379.

[68]

Lin, X. Z.; Ma, W. G.; Sun, K. J.; Sun, B.; Fu, X. M.; Ren, X. Q.; Liu, C.; Huang, J. H. [AuAg26(SR)18S] nanocluster: Open shell structure and high faradaic efficiency in electrochemical reduction of CO2 to CO. J. Phys. Chem. Lett. 2021, 12, 552–557.

[69]

Wu, Z. N.; Du, Y. H.; Liu, J. L.; Yao, Q. F.; Chen, T. K.; Cao, Y. T.; Zhang, H.; Xie, J. P. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139–8144.

[70]

Lahtinen, T.; Hulkko, E.; Sokołowska, K.; Tero, T. R.; Saarnio, V.; Lindgren, J.; Pettersson, M.; Häkkinen, H.; Lehtovaara, L. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au~250(p-MBA) n . Nanoscale 2016, 8, 18665–18674.

[71]

Linko, V.; Zhang, H.; Nonappa; Kostiainen, M. A.; Ikkala, O. From precision colloidal hybrid materials to advanced functional assemblies. Acc. Chem. Res. 2022, 55, 1785–1795.

[72]

Agrachev, M.; Antonello, S.; Dainese, T.; Gascón, J. A.; Pan, F. F.; Rissanen, K.; Ruzzi, M.; Venzo, A.; Zoleo, A.; Maran, F. A magnetic look into the protecting layer of Au25 clusters. Chem. Sci. 2016, 7, 6910–6918.

[73]

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif mediated Au25(SPh)5(PPh3)10X2 nanorod of conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

[74]

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

[75]

Wu, Z. N.; Yao, Q. F.; Chai, O. J. H.; Ding, N.; Xu, W.; Zang, S. Q.; Xie, J. P. Unraveling the impact of gold(I)-thiolate motifs on the aggregation-induced emission of gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 9934–9939.

[76]

Chen, Y. X.; Liu, C.; Tang, Q.; Zeng, C. J.; Higaki, T.; Das, A.; Jiang, D. E.; Rosi, N. L.; Jin, R. C. Isomerism in Au28(SR)20 nanocluster and stable structures. J. Am. Chem. Soc. 2016, 138, 1482–1485.

[77]

Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Structure-conserving spontaneous transformations between nanoparticles. Nat. Commun. 2016, 7, 13447.

[78]
Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev. 2016 , 320–321, 238–250.
DOI
[79]

Zeng, C. J.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. C. Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011–10013.

[80]

Liu, X.; Zhang, Y. F.; Li, Z. W.; Li, G.; Taherkhani, F. Surface ligand engineering on the optical properties of atomically precise AuAg nanoclusters. Chin. J. Structural Chem. 2023, 42, 100154.

[81]

Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

[82]

Ye, H. C.; Crooks, R. M. Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. J. Am. Chem. Soc. 2005, 127, 4930–4934.

[83]

Ye, H. C.; Crooks, J. A.; Crooks, R. M. Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles. Langmuir 2007, 23, 11901–11906.

[84]

Dumitrescu, I.; Crooks, R. M. Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles. Proc. Natl. Acad. Sci. USA 2012, 109, 11493–11497.

[85]

Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J. Am. Chem. Soc. 2015, 137, 1206–1212.

[86]

Wang, L. K.; Tang, Z. H.; Yan, W.; Yang, H. Y.; Wang, Q. N.; Chen, S. W. Porous carbon-supported gold nanoparticles for oxygen reduction reaction: Effects of nanoparticle size. ACS Appl. Mater. Interfaces 2016, 8, 20635–20641.

[87]

Antonello, S.; Dainese, T.; Pan, F. F.; Rissanen, K.; Maran, F. Electrocrystallization of monolayer-protected gold clusters: Opening the door to quality, quantity, and new structures. J. Am. Chem. Soc. 2017, 139, 4168–4174.

[88]

Imaoka, T.; Kitazawa, H.; Chun, W. J.; Omura, S.; Albrecht, K.; Yamamoto, K. Magic number Pt13 and misshapen Pt12 clusters: Which one is the better catalyst? J. Am. Chem. Soc. 2013, 135, 13089–13095.

[89]

Tang, Z. H.; Wu, W.; Wang, K. Oxygen reduction reaction catalyzed by noble metal clusters. catalysts 2018, 8, 65.

[90]

Shi, Q. Q.; Wei, X. J.; Raza, A.; Li, G. Recent advances in aerobic photo-oxidation of methanol to valuable chemicals. ChemCatChem 2021, 13, 3381–3395.

[91]

Raza, A.; Zhang, X. Y.; Ali, S.; Cao, C. H.; Rafi, A. A.; Li, G. Photoelectrochemical energy conversion over 2D materials. Photochem 2022, 2, 272–298.

[92]

Chen, W.; Chen, S. W. Oxygen electroreduction catalyzed by gold nanoclusters: Strong core size effects. Angew. Chem., Int. Ed. 2009, 48, 4386–4389.

[93]

Huang, J. F.; Hörmann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 2018, 9, 3117.

[94]

Costentin, C.; Robert, M.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436.

[95]

Sang, J. Q.; Wei, P. F.; Liu, T. F.; Lv, H. F.; Ni, X. M.; Gao, D. F.; Zhang, J. W.; Li, H. F.; Zang, Y. P.; Yang, F. et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew. Chem., Int. Ed. 2022, 61, e202114238.

[96]

Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.

[97]

Li, S. T.; Alfonso, D.; Nagarajan, A. V.; House, S. D.; Yang, J. C.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 2020, 10, 12011–12016.

[98]

Kauffman, D. R.; Alfonso, D.; Matranga, C.; Ohodnicki, P.; Deng, X. Y.; Siva, R. C.; Zeng, C. J.; Jin, R. C. Probing active site chemistry with differently charged Au25 q nanoclusters ( q = −1, 0, +1). Chem. Sci. 2014, 5, 3151–3157.

[99]

Wang, X. N.; Tong, Y. F.; Feng, W. T.; Liu, P. Y.; Li, X. J.; Cui, Y. P.; Cai, T. H.; Zhao, L. M.; Xue, Q. Z.; Yan, Z. F. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 2023, 14, 3767.

[100]

Hassan, J. Z.; Zaheer, A.; Raza, A.; Li, G. Au-based heterostructure composites for photo and electro catalytic energy conversions. Sustain. Mater. Technol. 2023, 36, e00609.

[101]

Shi, Q. Q.; Zhang, X. Y.; Li, Z. W.; Raza, A.; Li, G. Plasmonic Au nanoparticle of a Au/TiO2-C3N4 heterojunction boosts up photooxidation of benzyl alcohol using LED light. ACS Appl. Mater. Interfaces 2023, 15, 30161–30169.

[102]

Jupally, V. R.; Dharmaratne, A. C.; Crasto, D.; Huckaba, A. J.; Kumara, C.; Nimmala, P. R.; Kothalawala, N.; Delcamp, J. H.; Dass, A. Au137(SR)56 nanomolecules: Composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO2. Chem. Commun. 2014, 50, 9895–9898.

[103]

Zhuang, S. L.; Chen, D.; Liao, L. W.; Zhao, Y.; Xia, N.; Zhang, W. H.; Wang, C. M.; Yang, J.; Wu, Z. K. Hard-sphere random close-packed Au47Cd2(TBBT)31 nanoclusters with a faradaic efficiency of up to 96 % for electrocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2020, 59, 3073–3077.

[104]

Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

[105]

Liu, Z. H.; Wang, T.; Yu, X.; Geng, Z. X.; Sang, Y. H.; Liu, H. In situ alternative switching between Ti4+ and Ti3+ driven by H2O2 in TiO2 nanostructures: Mechanism of pseudo-Fenton reaction. Mater. Chem. Front. 2017, 1, 1989–1994.

[106]

Xu, W. W.; Gao, Y.; Zeng, X. C. Unraveling structures of protection ligands on gold nanoparticle Au68(SH)32. Sci. Adv. 2015, 1, e1400211.

[107]

Raza, A.; Rafi, A. A.; Hassan, J. Z.; Rafiq, A.; Li, G. Rational design of 2D heterostructured photo- & electro-catalysts for hydrogen evolution reaction: A review. Appl. Surf. Sci. Adv. 2023, 15, 100402.

[108]

Qumar, U.; Hassan, J. Z.; Bhatti, R. A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol. 2022, 131, 122–166.

[109]

Shi, Q. Q.; Raza, A.; Xu, L. L.; Li, G. Bismuth oxyhalide quantum dots modified sodium titanate necklaces with exceptional population of oxygen vacancies and photocatalytic activity. J. Colloid Interface Sci. 2022, 625, 750–760.

[110]

Silwana, B.; van der Horst, C.; Iwuoha, E. I.; Somerset, V. A sensitive reduced graphene oxide-antimony nanofilm sensor for simultaneous determination of PGMs. J. Nano Res. 2016, 44, 134–141.

[111]

Gao, Y.; Shao, N.; Pei, Y.; Chen, Z. F.; Zeng, X. C. Catalytic activities of subnanometer gold clusters (Au16-Au18, Au20, and Au27-Au35) for CO oxidation. ACS Nano 2011, 5, 7818–7829.

[112]

Wu, Z. L.; Jiang, D. E.; Mann, A. K. P.; Mullins, D. R.; Qiao, Z. A.; Allard, L. F.; Zeng, C. J.; Jin, R. C.; Overbury, S. H. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 2014, 136, 6111–6122.

[113]

Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2012, 11, 49–52.

[114]

Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.

[115]

Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

[116]
Bernhardt, T.; Heiz, U.; Landman, U. Chemical and catalytic properties of size-selected free and supported clusters. In Nanocatalysis; Heiz, U.; Landman, U., Eds.; Springer: Berlin, Heidelberg, 2007; pp 1–191.
DOI
[117]

Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731–17735.

[118]

Zhuang, S. L.; Chen, D.; Ng, W. P.; Liu, L. J.; Sun, M. Y.; Liu, D. Y.; Nawaz, T.; Xia, Q.; Wu, X.; Huang, Y. L. et al. Phosphine-triggered structural defects in Au44 homologues boost electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202306696.

[119]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[120]

Du, X. S.; Jin, R. C. Atomic-precision engineering of metal nanoclusters. Dalton Trans. 2020, 49, 10701–10707.

[121]

Cai, X.; Sun, Y. N.; Xu, J. Y.; Zhu, Y. Contributions of internal atoms of atomically precise metal nanoclusters to catalytic performances. Chem.—Eur. J. 2021, 27, 11539–11547.

[122]

Wang, Q. N.; Wang, L. K.; Tang, Z. H.; Wang, F. C.; Yan, W.; Yang, H. Y.; Zhou, W. J.; Li, L. G.; Kang, X. W.; Chen, S. W. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets. Nanoscale 2016, 8, 6629–6635.

[123]

Yang, D.; Wang, J. W.; Wang, Q. J.; Yuan, Z. T.; Dai, Y. H.; Zhou, C. M.; Wan, X. Y.; Zhang, Q. C.; Yang, Y. H. Electrocatalytic CO2 reduction over atomically precise metal nanoclusters protected by organic ligands. ACS Nano 2022, 16, 15681–15704.

[124]

Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[125]

Yao, Q. F.; Wu, Z. N.; Liu, Z. H.; Lin, Y. Z.; Yuan, X.; Xie, J. P. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chem. Sci. 2021, 12, 99–127.

[126]

Nonappa; Lahtinen, T.; Haataja, J. S.; Tero, T.-R.; Häkkinen, H.; Ikkala, O. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: From 2D colloidal crystals to spherical capsids. Angew. Chem., Int. Ed. 2016, 55, 16035–16038.

[127]

Nonappa; Ikkala, O. Hydrogen bonding directed colloidal self-assembly of nanoparticles into 2D crystals, capsids, and supracolloidal assemblies. Adv. Funct. Mater. 2017, 28, 1704328.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 November 2023
Revised: 12 January 2024
Accepted: 16 January 2024
Published: 01 March 2024
Issue date: March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We thank financial support from the National Natural Science Foundation of China (Nos. 22172167 and 22272112).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return