Journal Home > Volume 3 , Issue 2

Using chain-like polyethers consisting of two terminal –NH2 groups and (TBA)4[α-Mo8O26] as starting materials, two polyoxometalatocrown ethers were prepared by a cyclization reaction through the formation of Mo≡N triple bonds: (TBA)2[Mo6O17N(o-C6H4OCH2(CH2OCH2)nCH2OC6H4-o)N] (compounds 1, n = 1; 2, n = 2). As confirmed by single-crystal X-ray diffraction and infrared (IR) studies, the polyoxometalatocrown ether 2 can capture primary ammonium cations in solid state.

Full text
Electronic supplementary material
About this article

Polyoxometalatocrown ether: A new type of metallacrown ether based on polyoxometalate

Show Author's information Fengping Xiao1,2 ( )Xianggao Meng1Longsheng Wang2,3Jian Hao2Chunlin Lv2Yongge Wei2 ( )
College of Chemistry, Central China Normal University, Wuhan 430079, China
Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
School of Material and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China


Using chain-like polyethers consisting of two terminal –NH2 groups and (TBA)4[α-Mo8O26] as starting materials, two polyoxometalatocrown ethers were prepared by a cyclization reaction through the formation of Mo≡N triple bonds: (TBA)2[Mo6O17N(o-C6H4OCH2(CH2OCH2)nCH2OC6H4-o)N] (compounds 1, n = 1; 2, n = 2). As confirmed by single-crystal X-ray diffraction and infrared (IR) studies, the polyoxometalatocrown ether 2 can capture primary ammonium cations in solid state.

Keywords: crystal structure, polyoxometalates, crown ethers, organic ammonium cations



Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 2495–2496.


Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036.

Crown Compounds: Toward Future Applications; Cooper, S. R., Ed.; VCH: New York, 1992.
Gokel, G. W.; Negin, S.; Cantwell, R. Crown ethers. In Comprehensive Supramolecular Chemistry II; Atwood, J. L., Ed.; Elsevier: Amsterdam, 2017; pp 3–48.

Wang, L.; Cheng, L.; Li, G. F.; Liu, K.; Zhang, Z. M.; Li, P. T.; Dong, S. Y.; Yu, W.; Huang, F. H.; Yan, X. Z. A self-cross-linking supramolecular polymer network enabled by crown-ether-based molecular recognition. J. Am. Chem. Soc. 2020, 142, 2051–2058.


Hyde, C. B.; Welham, K. J.; Mascagni, P. The use of crown ethers in peptide chemistry. Part 2. Syntheses of dipeptide complexes with cyclic polyether 18-crown-6 and their derivatisation with DMSO. J. Chem. Soc. Perkin Trans. 2 1989, 2011–2015.


Mohammadzadeh Kakhki, R. Application of crown ethers as stationary phase in the chromatographic methods. J. Incl. Phenom. Macrocycl. Chem. 2013, 75, 11–22.


Gokel, G. W.; Leevy, W. M.; Weber, M. E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 2004, 104, 2723–2750.


Yu, L.; Li, F. Z.; Wu, J. Y.; Xie, J. Q.; Li, S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016, 154, 89–102.


Zhang, Y. F.; Di, F. F.; Li, P. F.; Xiong, R. G. Crown ether host-guest molecular ferroelectrics. Chem.—Eur. J. 2022, 28, e202102990.


Gray, G. M. Metallacrown ethers: Unique organometallic ligands. Comments Inorg. Chem. 1995, 17, 95–114.


Ostrowska, M.; Fritsky, I. O.; Gumienna-Kontecka, E.; Pavlishchuk, A. V. Metallacrown-based compounds: Applications in catalysis, luminescence, molecular magnetism, and adsorption. Coord. Chem. Rev 2016, 327–328, 304–332.


Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Structural and functional evolution of metallacrowns. Chem. Rev. 2007, 107, 4933–5003.


Slone, R. V.; Benkstein, K. D.; Bélanger, S.; Hupp, J. T.; Guzei, I. A.; Rheingold, A. L. Luminescent transition-metal-containing cyclophanes ("molecular squares"): Covalent self-assembly, host-guest studies and preliminary nanoporous materials applications. Coord. Chem. Rev. 1998, 171, 221–243.


Leininger, S.; Olenyuk, B.; Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 2000, 100, 853–908.


Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323–344.


Lah, M. S.; Pecoraro, V. L. Isolation and characterization of {MnII[MnIII(salicylhydroximate)]4(acetate)2(DMF)6}·2DMF: An inorganic analogue of M2+(12-crown-4). J. Am. Chem. Soc. 1989, 111, 7258–7259.


Powell, J.; Lough, A.; Wang, F. Synthesis and chemistry of a molybdenum carbonyl phosphinite complex containing a ditopic macrocyclic ligand with chelating phosphorus-donor and crown ether characteristics. Organometallics 1992, 11, 2289–2295.


Kelly, M. E.; Dietrich, A.; Gómez-Ruiz, S.; Kalinowski, B.; Kaluderović, G. N.; Müller, T.; Paschke, R.; Schmidt, J.; Steinborn, D.; Wagner, C. et al. Platinum(IV) metallacrown ethers: Synthesis, structures, host properties and anticancer evaluation. Organometallics 2008, 27, 4917–4927.


Grosshans, P.; Jouaiti, A.; Hosseini, M. W.; De Cian, A.; Kyritsakas-Gruber, N. Metallacrown ethers: Synthesis and structural investigation of silver metallamacrocycles. Tetrahedron Lett. 2003, 44, 1457–1460.


Liu, Q. X.; Zhao, X. J.; Wu, X. M.; Guo, J. H.; Wang, X. G. New mercury(II) and silver(I) complexes containing NHC metallacrown ethers with the π-π stacking interactions. J. Organomet. Chem. 2007, 692, 5671–5679.


Smith, D. C.; Cagle, E. C.; Gray, G. M. Synthesis, characterization and reactions of [RhCl(CO){(Ph2P(CH2CH2O) m CH2CH2Ph2-P,P’)}] n ( m = 3, 4, 5 n = 1, 2 …) metallacrown crown ethers. J. Organomet. Chem. 2018, 876, 78–82.


Ramakrishna, B.; Kumar, C. A.; Logesh, T. J.; Manimaran, B. Oxamidato pillared heteroligated dirhenium(I) metallacrown ethers: Synthesis, spectroscopic and structural characterization. J. Organomet. Chem. 2017, 828, 116–121.


Song, F. T.; Ouyang, G. H.; Li, Y.; He, Y. M.; Fan, Q. H. Metallacrown ether catalysts containing phosphine-phosphite polyether ligands for Rh-catalyzed asymmetric hydrogenation-enhancements in activity and enantioselectivity. Eur. J. Org. Chem. 2014, 2014, 6713–6719.


Gouzerh, P.; Proust, A. Main-group element, organic, and organometallic derivatives of polyoxometalates. Chem. Rev. 1998, 98, 77–112.


Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.


Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Pigga, J. M.; Langston, M. L. K.; Liu, T. B.; Prozorov, R.; Luban, M.; Schröder, C. et al. Porous capsules {(M)M5}12FeIII30 (M = MoVI, WVI): Sphere surface supramolecular chemistry with 20 ammonium ions, related solution properties, and tuning of magnetic exchange interactions. Angew. Chem., Int. Ed. 2010, 49, 514–519.


Long, D. L.; Abbas, H.; Kögerler, P.; Cronin, L. A high-nuclearity “Celtic-ring” isopolyoxotungstate, [H12W36O120]12–, that captures trace potassium ions. J. Am. Chem. Soc. 2004, 126, 13880–13881.


Xiao, F. P.; Hao, J.; Zhang, J.; Lv, C. L.; Yin, P. C.; Wang, L. S.; Wei, Y. G. Polyoxometalatocyclophanes: Controlled assembly of polyoxometalate-based chiral metallamacrocycles from achiral building blocks. J. Am. Chem. Soc. 2010, 132, 5956–5957.


Du, Y. H.; Rheingold, A. L.; Maatta, E. A. A polyoxometalate incorporating an organoimido ligand: Preparation and structure of [Mo5O18(MoNC6H4CH3)]2–. J. Am. Chem. Soc. 1992, 114, 345–346.


Strong, J. B.; Yap, G. P. A.; Ostrander, R.; Liable-Sands, L. M.; Rheingold, A. L.; Thouvenot, R.; Gouzerh, P.; Maatta, E. A. A new class of functionalized polyoxometalates: Synthetic, structural, spectroscopic, and electrochemical studies of organoimido derivatives of [Mo6O19]2–. J. Am. Chem. Soc. 2000, 122, 639–649.


Proust, A.; Thouvenot, R.; Chaussade, M.; Robert, F.; Gouzerh, P. Phenylimido derivatives of [Mo6O19]2–: Syntheses, X-ray structures, vibrational, electrochemical, 95Mo and 14N NMR studies. Inorg. Chim. Acta 1994, 224, 81–95.


Wei, Y. G.; Xu, B. B.; Barnes, C. L.; Peng, Z. H. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates. J. Am. Chem. Soc. 2001, 123, 4083–4084.


Akutagawa, T.; Endo, D.; Noro, S. I.; Cronin, L.; Nakamura, T. Directing organic-inorganic hybrid molecular-assemblies of polyoxometalate crown-ether complexes with supramolecular cations. Coord. Chem. Rev. 2007, 251, 2547–2561.


You, W. S.; Wang, E. B.; He, Q. L.; Xu, L.; Xing, Y.; Jia, H. Q. Synthesis and crystal structure of a new supermolecular compound: [C12H24O6][H3PMo12O40]·22H2O (C12H24O6 = 18-crown-6). J. Mol. Struct. 2000, 524, 133–139.


Xiong, J.; Luo, T.; Zhang, J.; Li, X. X.; Lv, S. F.; Peng, J. J.; Li, M.; Li, W.; Nakamura, T. Two supramolecular inorganic-organic hybrid crystals based on Keggin polyoxometalates and crown ethers. Crystals. 2018, 8, 17.


Yang, G.; Wu, Y. C.; Lv, Z. X.; Jiang, X. Y.; Shi, J. H.; Zhang, Y. Z.; Chen, M.; Ni, L. B.; Diao, G. W.; Wei, Y. G. Keggin-type polyoxometalate-based crown ether complex for lithium-sulfur batteries. Chem. Commun. 2023, 59, 788–791.


Shi, J. H.; Zhang, H. X.; Wang, P. S.; Wang, P.; Zha, J. J.; Liu, Y.; Gautam, J.; Zhang, L. N.; Wang, Y.; Xie, J. et al. Inorganic-organic hybrid supramolecular architectures based on Keggin polyoxometalates and crown ether: Synthesis, crystal structure and electrochemical properties. CrystEngComm 2021, 23, 8482–8489.


Wang, P.; Zhang, H. X.; Wang, P. S.; Zha, J. J.; Gautam, J.; Zhang, H. Z.; Li, R.; Zhang, L. N.; Diao, G. W.; Ni, L. B. A crown ether supramolecular host-guest complex with Keggin polyoxometalate: Synthesis, crystal structure and electrocatalytic performance for hydrogen evolution reaction. Catal. Commun. 2022, 165, 106446.


Clegg, W.; Errington, R. J.; Fraser, K. A.; Holmes, S. A.; Schäfer, A. Functionalisation of [Mo6O19]2– with aromatic amines: Synthesis and structure of a hexamolybdate building block with linear difunctionality. J. Chem. Soc. Chem. Commun. 1995, 455–456.


Stark, J. L.; Rheingold, A. L.; Maatta, E. A. Polyoxometalate clusters as building blocks: Preparation and structure of bis(hexamolybdate) complexes covalently bridged by organodiimido ligands. J. Chem. Soc. Chem. Commun 1995, 1165–1166.


Roesner, R. A.; McGrath, S. C.; Brockman, J. T.; Moll, J. D.; West, D. X.; Swearingen, J. K.; Castineiras, A. Mono- and di-functional aromatic amines with p-alkoxy substituents as novel arylimido ligands for the hexamolybdate ion. Inorg. Chim. Acta. 2003, 342, 37–47.


Wu, P. F.; Li, Q.; Ge, N.; Wei, Y. G.; Wang, Y.; Wang, P.; Guo, H. Y. An easy route to monofunctionalized organoimido derivatives of the lindqvist hexamolybdate. Eur. J. Inorg. Chem. 2004, 2004, 2819–2822.


Xiao, F. P.; Misdrahi, M. F.; Zhang, J.; Yin, P. C.; Hao, J.; Lv, C. L.; Xiao, Z. C.; Liu, T. B.; Wei, Y. G. Buildup of amphiphilic molecular bola from organic-inorganic hybrid polyoxometalates and their vesicle-like supramolecular assembly. Chem.—Eur. J. 2011, 17, 12006–12009.


Zhang, J.; Xiao, F. P.; Hao, J.; Wei, Y. G. The chemistry of organoimido derivatives of polyoxometalates. Dalton Trans. 2012, 41, 3599–3615.


Leigh, D. A.; Thomson, A. R. Switchable dual binding mode molecular shuttle. Org. Lett. 2006, 8, 5377–5379.


Corra, S.; de Vet, C.; Groppi, J.; La Rosa, M.; Silvi, S.; Baroncini, M.; Credi. A. Chemical on/off switching of mechanically planar chirality and chiral anion recognition in a [2]rotaxane molecular shuttle. J. Am. Chem. Soc. 2019, 141, 9129–9133.

0055_ESM.pdf (2.4 MB)
Publication history
Rights and permissions

Publication history

Received: 26 October 2023
Revised: 23 December 2023
Accepted: 08 January 2024
Published: 19 January 2024
Issue date: June 2024


© The Author(s) 2024. Published by Tsinghua University Press.



This work is sponsored by the National Natural Science Foundation of China (Nos. 22371158 and 21225103) and the State Key Laboratory of Natural and Biomimetic Drugs (No. K202008).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See