Journal Home > Volume 3 , Issue 2

Herein, the overall structure of a nanocluster coprotected by phosphine and mercaptan ligands [Au7Ag8(SPh)6((p-OMePh)3P)8]NO3 (Au7Ag8) was reported. For comparison, a previously reported nanocluster with the same structure, but a different metal composition, [Au13Cu2(TBBT)6((p-ClPh)3P)8]SbF6 (Au13Cu2), was synthesized. In addition, their optical and electrocatalytic CO2 reduction properties were comprehensively compared. The results reveal that the photoluminescence quantum yield (PLQY) of the Ag-doped Au7Ag8 nanocluster is 1.62%, which is seven times greater than that of the Cu-doped Au13Cu2 nanocluster (PLQY = 0.23%). Furthermore, the Au13Cu2 nanocluster demonstrates significantly enhanced catalytic selectivity for CO, with a CO Faradaic efficiency ranging from 79.7% to 90.4%, compared with that of the Au7Ag8 nanocluster (CO Faradaic efficiency: 67.2%–77.7%) within a potential range of 0.5 to −1.1 V. From structural analyses, the superior CO selectivity of Au13Cu2 is attributed to the copper dopant.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomically precise M15 (M = Au/Ag/Cu) alloy nanoclusters: Structural analysis, optical and electrocatalytic CO2 reduction properties

Show Author's information Along Ma,§Jiawei Wang,§Yifei WangYang ZuoYonggang RenXiaoshuang Ma ( )Shuxin Wang ( )
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

§Along Ma and Jiawei Wang contributed equally to this work.

Abstract

Herein, the overall structure of a nanocluster coprotected by phosphine and mercaptan ligands [Au7Ag8(SPh)6((p-OMePh)3P)8]NO3 (Au7Ag8) was reported. For comparison, a previously reported nanocluster with the same structure, but a different metal composition, [Au13Cu2(TBBT)6((p-ClPh)3P)8]SbF6 (Au13Cu2), was synthesized. In addition, their optical and electrocatalytic CO2 reduction properties were comprehensively compared. The results reveal that the photoluminescence quantum yield (PLQY) of the Ag-doped Au7Ag8 nanocluster is 1.62%, which is seven times greater than that of the Cu-doped Au13Cu2 nanocluster (PLQY = 0.23%). Furthermore, the Au13Cu2 nanocluster demonstrates significantly enhanced catalytic selectivity for CO, with a CO Faradaic efficiency ranging from 79.7% to 90.4%, compared with that of the Au7Ag8 nanocluster (CO Faradaic efficiency: 67.2%–77.7%) within a potential range of 0.5 to −1.1 V. From structural analyses, the superior CO selectivity of Au13Cu2 is attributed to the copper dopant.

Keywords: photoluminescence, alloy nanocluster, electrocatalytic CO2 reduction reaction (eCO2RR)

References(53)

[1]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[2]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[3]

Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[4]

Zhang, S. S.; Havenridge, S.; Zhang, C. K.; Wang, Z.; Feng, L.; Gao, Z. Y.; Aikens, C. M.; Tung, C. H.; Sun, D. Sulfide boosting near-unity photoluminescence quantum yield of silver nanocluster. J. Am. Chem. Soc. 2022, 144, 18305–18314.

[5]

Kang, X.; Wang, S. X.; Zhu, M. Z. Observation of a new type of aggregation-induced emission in nanoclusters. Chem. Sci. 2018, 9, 3062–3068.

[6]

Zhang, M. M.; Gao, K. K.; Dong, X. Y.; Si, Y. B.; Jia, T.; Han, Z.; Zang, S. Q.; Mak, T. C. W. Chiral hydride Cu18 clusters transform to superatomic Cu15Ag4 clusters: Circularly polarized luminescence lighting. J. Am. Chem. Soc. 2023, 145, 22310–22316.

[7]

Man, R. W. Y.; Yi, H.; Malola, S.; Takano, S.; Tsukuda, T.; Häkkinen, H.; Nambo, M.; Crudden, C. M. Synthesis and characterization of enantiopure chiral bis NHC-stabilized edge-shared Au10 nanocluster with unique prolate shape. J. Am. Chem. Soc. 2022, 144, 2056–2061.

[8]

Ding, M.; Tang, L.; Ma, X. S.; Song, C. X.; Wang, S. X. Effects of ligand tuning and core doping of atomically precise copper nanoclusters on CO2 electroreduction selectivity. Commun. Chem. 2022, 5, 172.

[9]

Ma, G. Y.; Sun, F.; Qiao, L.; Shen, Q. L.; Wang, L.; Tang, Q.; Tang, Z. H. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 2023, 16, 10867–10872.

[10]

Song, T. X.; Yao, Z.; Li, G. J.; Cai, X.; Liu, X.; Wang, Y. G.; Ding, W. P.; Zhu, Y. Catalytic activity coupled with structural stability within a heterodimeric Au29(SR)19 cluster. ACS Catal. 2023, 13, 10878–10886.

[11]

Li, G. J.; Hou, J.; Lei, X. M.; Li, D.; Yu, E. Q.; Hu, W. G.; Cai, X.; Liu, X.; Chen, M. Y.; Zhu, Y. Reactivity and recyclability of ligand-protected metal cluster catalysts for CO2 transformation. Angew. Chem., Int. Ed. 2023, 62, e202216735.

[12]

Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

[13]

Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 2017, 139, 9728–9736.

[14]

Liu, Z. H.; Wu, Z. N.; Yao, Q. F.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today 2021, 36, 101053.

[15]

Wu, Z. L.; Hu, G. X.; Jiang, D. E.; Mullins, D. R.; Zhang, Q. F.; Allard, L. F.; Wang, L. S.; Overbury, S. H. Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett. 2016, 16, 6560–6567.

[16]

Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

[17]

Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.

[18]

Sugiuchi, M.; Shichibu, Y.; Konishi, K. An Inherently chiral Au24 framework with double-helical hexagold strands. Angew. Chem., Int. Ed. 2018, 57, 7855–7859.

[19]

Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

[20]

Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 2017, 121, 13848–13853.

[21]

Liu, Y. J.; Shao, P.; Gao, M. Y.; Fang, W. H.; Zhang, J. Synthesis of Ag-doped polyoxotitanium nanoclusters for efficient electrocatalytic CO2 reduction. Inorg. Chem. 2020, 59, 11442–11448.

[22]

Zhai, Y. J.; Han, P.; Yun, Q. B.; Ge, Y. Y.; Zhang, X.; Chen, Y.; Zhang, H. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2022, 2, 467–485.

[23]

Wang, Z.; Li, M. D.; Shi, J. Y.; Su, H. F.; Liu, J. W.; Feng, L.; Gao, Z. Y.; Xue, Q. W.; Tung, C. H.; Sun, D. et al. In situ capture of a ternary supramolecular cluster in a 58-nuclei silver supertetrahedron. CCS Chem. 2022, 4, 1788–1795.

[24]

Su, Y. M.; Ji, B. Q.; Wang, Z.; Zhang, S. S.; Feng, L.; Gao, Z. Y.; Li, Y. W.; Tung, C. H.; Sun, D.; Zheng, L. S. Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. Sci. China Chem. 2021, 64, 1482–1486.

[25]

Wang, Z.; Qu, Q. P.; Su, H. F.; Huang, P.; Gupta, R. K.; Liu, Q. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16–20.

[26]

Yuan, Q. Q.; Kang, X.; Hu, D. Q.; Qin, C. W. L.; Wang, S. X.; Zhu, M. Z. Metal synergistic effect on cluster optical properties: Based on Ag25 series nanoclusters. Dalton Trans. 2019, 48, 13190–13196.

[27]

Ma, X. H.; Jia, J. T.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster. Nano Res. 2022, 15, 5569–5574.

[28]

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

[29]

Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J. B.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. C. Reconstructing the surface of gold nanoclusters by cadmium doping. J. Am. Chem. Soc. 2017, 139, 17779–17782.

[30]

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

[31]

Kang, X.; Abroshan, H.; Wang, S. X.; Zhu, M. Z. Free valence electron centralization strategy for preparing ultrastable nanoclusters and their catalytic application. Inorg. Chem. 2019, 58, 11000–11009.

[32]

Shen, H.; Xu, Z.; Wang, L. Z.; Han, Y. Z.; Liu, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Tertiary chiral nanostructures from C-H ··· F directed assembly of chiroptical superatoms. Angew. Chem., Int. Ed. 2021, 60, 22411–22416.

[33]

Li, H.; Zhou, C. J.; Wang, E. D.; Kang, X.; Xu, W. W.; Zhu, M. Z. An insight, at the atomic level, into the intramolecular metallophilic interaction in nanoclusters. Chem. Commun. 2022, 58, 5092–5095.

[34]

Anumula, R.; Reber, A. C.; An, P.; Cui, C. N.; Guo, M. D.; Wu, H. M.; Luo, Z. X.; Khanna, S. N. Ligand accommodation causes the anti-centrosymmetric structure of Au13Cu4 clusters with near-infrared emission. Nanoscale 2020, 12, 14801–14807.

[35]

Wang, J. Q.; He, R. L.; Liu, W. D.; Feng, Q. Y.; Zhang, Y. E.; Liu, C. Y.; Ge, J. X.; Wang, Q. M. Integration of metal catalysis and organocatalysis in a metal nanocluster with anchored proline. J. Am. Chem. Soc. 2023, 145, 12255–12263.

[36]

Zhang, S. S.; Liu, R. C.; Zhang, X. C.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C. H.; Sun, D. Core engineering of paired core-shell silver nanoclusters. Sci. China Chem. 2021, 64, 2118–2124.

[37]

Wang, Z.; Su, H. F.; Zhuang, G. L.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Carbonate-water supramolecule trapped in silver nanoclusters encapsulating unprecedented Ag11 Kernel. CCS Chem. 2020, 2, 663–672.

[38]

Rambukwella, M.; Chang, L.; Ravishanker, A.; Fortunelli, A.; Stener, M.; Dass, A. Au36(SePh)24 nanomolecules: Synthesis, optical spectroscopy and theoretical analysis. Phys. Chem. Chem. Phys. 2018, 20, 13255–13262.

[39]

Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114–13118.

[40]

Ma, A. L.; Wang, J. W.; Kong, J.; Ren, Y. G.; Wang, Y. X.; Ma, X. S.; Zhou, M.; Wang, S. X. Au10Ag17(TPP)10(SR)6Cl5 nanocluster: Structure, transformation and the origin of its photoluminescence. Phys. Chem. Chem. Phys. 2023, 25, 9772–9778.

[41]

Klementyeva, S. V.; Woern, K.; Schrenk, C.; Zhang, M. H.; Khusniyarov, M. M.; Schnepf, A. [(thf)5Ln(Ge9{Si(SiMe3)3}2)] (Ln = Eu, Sm, Yb): Capping metalloid germanium cluster with lanthanides. Inorg. Chem. 2023, 62, 5614–5621.

[42]

Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

[43]

Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

[44]

Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.

[45]

Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.

[46]

Deng, G. C.; Kim, J.; Bootharaju, M. S.; Sun, F.; Lee, K.; Tang, Q.; Hwang, Y. J.; Hyeon, T. Body-centered-cubic-kernelled Ag15Cu6 nanocluster with alkynyl protection: Synthesis, total Structure, and CO2 electroreduction. J. Am. Chem. Soc. 2022, 145, 3401–3407.

[47]

Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.

[48]

Liu, L. H.; Li, N.; Han, M.; Han, J. R.; Liang, H. Y. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2022, 41, 125–131.

[49]

Cai, Y. F.; Fei, C.; Zhang, C.; Yang, J.; Wang, L.; Zhan, W. C.; Guo, Y. L.; Cao, X. M.; Gong, X. Q.; Guo, Y. Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Met. 2022, 41, 3060–3068.

[50]

Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 26136–26141.

[51]

Li, Q. Z.; Huang, B. Y.; Yang, S.; Zhang, H.; Chai, J. S.; Pei, Y.; Zhu, M. Z. Unraveling the nucleation process from a Au(I)-SR complex to transition-size nanoclusters. J. Am. Chem. Soc. 2021, 143, 15224–15232.

[52]

Ma, X. S.; Sun, F.; Qin, L. B.; Liu, Y. G.; Kang, X. W.; Wang, L. K.; Jiang, D. E.; Tang, Q.; Tang, Z. H. Electrochemical CO2 reduction catalyzed by atomically precise alkynyl-protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 nanoclusters: Probing the effect of multi-metal core on selectivity. Chem. Sci. 2022, 13, 10149–10158.

[53]

Wang, K.; Liu, D. Y.; Liu, L. M.; Liu, J.; Hu, X. F.; Li, P.; Li, M. T.; Vasenko, A. S.; Xiao, C. H.; Ding, S. J. Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction. eScience. 2022, 2, 518–528.

File
0054_ESM.pdf (5.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 November 2023
Revised: 11 December 2023
Accepted: 07 January 2024
Published: 06 February 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We thank the financial support provided by the National Natural Science Foundation of China (Nos. 22171156 and 21803001), Taishan Scholar Foundation of Shandong Province (China), and Shandong Province Excellent Youth Innovation Team and Startup Funds from Qingdao University of Science and Technology.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return