Journal Home > Volume 3 , Issue 2

Quick response and high sensitivity are equally important for the practical application of gas sensors. In this study, we introduced polyoxometalates (POMs) into a classical ternary metal oxide CuBi2O4 for the first time by convenient electrospinning and prepared a group of heater-type gas sensors by using CuBi2O4/PW12 composite nanofibers. The sensor performances to formaldehyde gas were explored. The results proved that the gas-sensing response of the CuBi2O4/PW12 (PW12 = H3PW12O40·xH2O) composite sensor to 100 ppm formaldehyde gas was increased to 6.68, which was 3.92 times greater than the sensing capacity of the pure CuBi2O4 sensor. Simultaneously, the sensor exhibited a highly rapid response/recovery time of only 1/2 s, which is significantly faster than performances of CuBi2O4 gas sensors reported in the past literature. The cause of the improvement of the sensing performance was assessed via mechanism study, and it was found that the introduction of PW12 into the sensor contributed to its enhanced performance. It was found that PW12, as an electron acceptor, increased carrier mobility and reduced electron–hole recombination, thus contributing to enhanced gas-sensing properties. Moreover, other gas-sensing parameters such as selectivity, humidity resistance, repeatability, long-term stability were investigated. Hence, this study contributed to the literature on the development of polyoxometalates-based gas sensors.


menu
Abstract
Full text
Outline
About this article

Rapid and highly sensitive detection of formaldehyde gas via a polyoxometalate–CuBi2O4 composite gas sensor

Show Author's information Pinfan SongYing YangFeng LiHui YuXiangting DongTianqi Wang ( )
Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China

Abstract

Quick response and high sensitivity are equally important for the practical application of gas sensors. In this study, we introduced polyoxometalates (POMs) into a classical ternary metal oxide CuBi2O4 for the first time by convenient electrospinning and prepared a group of heater-type gas sensors by using CuBi2O4/PW12 composite nanofibers. The sensor performances to formaldehyde gas were explored. The results proved that the gas-sensing response of the CuBi2O4/PW12 (PW12 = H3PW12O40·xH2O) composite sensor to 100 ppm formaldehyde gas was increased to 6.68, which was 3.92 times greater than the sensing capacity of the pure CuBi2O4 sensor. Simultaneously, the sensor exhibited a highly rapid response/recovery time of only 1/2 s, which is significantly faster than performances of CuBi2O4 gas sensors reported in the past literature. The cause of the improvement of the sensing performance was assessed via mechanism study, and it was found that the introduction of PW12 into the sensor contributed to its enhanced performance. It was found that PW12, as an electron acceptor, increased carrier mobility and reduced electron–hole recombination, thus contributing to enhanced gas-sensing properties. Moreover, other gas-sensing parameters such as selectivity, humidity resistance, repeatability, long-term stability were investigated. Hence, this study contributed to the literature on the development of polyoxometalates-based gas sensors.

Keywords: formaldehyde, polyoxometalates, gas sensing, CuBi2O4, polyoxotungstate

References(41)

[1]

Chen, C. X.; Xie, G. Z.; Dai, J.; Li, W. X.; Cai, Y. L.; Li, J.; Zhang, Q. P.; Tai, H. L.; Jiang, Y. D.; Su, Y. J. Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 2023, 116, 108788.

[2]

Su, Y. J.; Liu, Y. L.; Li, W. X.; Xiao, X.; Chen, C. X.; Lu, H. J.; Yuan, Z.; Tai, H. L.; Jiang, Y. D.; Zou, J. et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 2023, 10, 842–851.

[3]

Pan, H.; Chen, G. R.; Chen, Y. M.; Di Carlo, A.; Mayer, M. A.; Shen, S.; Chen, C. X.; Li, W. X.; Subramaniam, S.; Huang, H. C. et al. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens. Bioelectron. 2023, 222, 114999.

[4]

Chen, C. X.; Jiang, M. J.; Luo, X. L.; Tai, H. L.; Jiang, Y. D.; Yang, M.; Xie, G. Z.; Su, Y. J. Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing. Sens. Actuators B: Chem. 2022, 370, 132441.

[5]

Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

[6]

Wang, T. Q.; Sun, Z. X.; Wang, Y.; Liu, R.; Sun, M. H.; Xu, L. Enhanced photoelectric gas sensing performance of SnO2 flower-like nanorods modified with polyoxometalate for detection of volatile organic compound at room temperature. Sens. Actuators B: Chem. 2017, 246, 769–775.

[7]

Zhang, S.; Sun, S. P.; Huang, B. Y.; Wang, N.; Li, X. G. UV-enhanced formaldehyde sensor using hollow In2O3@TiO2 double-layer nanospheres at room temperature. ACS Appl. Mater. Interfaces 2023, 15, 4329–4342.

[8]

Zhang, B.; Wang, J.; Wei, Q. F.; Yu, P. P.; Zhang, S.; Xu, Y.; Dong, Y.; Ni, Y.; Ao, J. P.; Xia, Y. Visible light-induced room-temperature formaldehyde gas sensor based on porous three-dimensional ZnO nanorod clusters with rich oxygen vacancies. ACS Omega 2022, 7, 22861–22871.

[9]

Wang, L.; Li, Y.; Yue, W. J.; Gao, S.; Zhang, C. W.; Chen, Z. X. High-performance formaldehyde gas sensor based on Cu-doped Sn3O4 hierarchical nanoflowers. IEEE Sens. J. 2020, 20, 6945–6953.

[10]

Xiao, C. L.; Zhang, X. H.; Ma, Z. Z.; Yang, K.; Gao, X. T.; Wang, H. Q.; Jia, L. C. Formaldehyde gas sensor with 1 ppb detection limit based on In-doped LaFeO3 porous structure. Sens. Actuators B: Chem. 2022, 371, 132558.

[11]

Phuoc, P. H.; Van Hoang, N.; Hung, N. M.; Hung, P. T.; Hoat, P. D.; Van Hieu, N. On-chip CuFe2O4 nanofiber for conductometric NO2 and H2S gas-sensors. Sens. Actuators B: Chem. 2023, 380, 133306.

[12]

Choi, Y. H.; Kim, D. H.; Hong, S. H. CuBi2O4 prepared by the polymerized complex method for gas-sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 14901–14913.

[13]

Choi, Y. H.; Kim, D. H.; Hong, S. H. Gas sensing properties of p-type CuBi2O4 porous nanoparticulate thin film prepared by solution process based on metal-organic decomposition. Sens. Actuators B: Chem. 2018, 268, 129–135.

[14]

Wang, X.; Liu, W. J.; Wang, C. L.; Zhang, S. W.; Ding, M.; Xu, X. J. Enhanced formaldehyde gas sensing performance of ternary CuBi2O4 oxides through oxygen vacancy manipulation and surface platinum decoration. Sens. Actuators B: Chem. 2021, 344, 130190.

[15]

Xu, J. Z.; Zhang, H. Z.; Fu, Z. M.; Ling, Y. H. Hydrothermal synthesis of hierarchical CuBi2O4 microspheres with improved gas sensitivity. Ceram. Int. 2022, 48, 31519–31527.

[16]

Song, P. F.; Wang, T. Q. Application of polyoxometalates in chemiresistive gas sensors: A review. ACS Sens. 2022, 7, 3634–3643.

[17]

Wang, P. Y.; Wang, T. Q.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. T. Enhanced sensing response of the first polyoxometalate electron acceptor modified MoS2 for NO2 gas detection at room temperature. Sens. Actuators B: Chem. 2023, 382, 133495.

[18]

Wang, P. Y.; Wang, T. Q.; Pei, W. Y.; Li, F.; Yang, Y.; Yu, H.; Dong, X. T. Bi-function of photocatalytic Cr (VI) removal and monitoring acetone gas by one-dimensional hierarchical TiO2@ polyoxometalates@MoS2 tandem heterojunctions. Sens. Actuators B: Chem. 2023, 387, 133743.

[19]

Song, J.; Li, Y.; Cao, P.; Jing, X. F.; Faheem, M.; Matsuo, Y.; Zhu, Y. L.; Tian, Y. Y.; Wang, X. H.; Zhu, G. S. Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: Reciprocal modulation of both capture and conversion materials. Adv. Mater. 2019, 31, 1902444.

[20]

Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

[21]

Granadeiro, C. M.; Julião, D.; Ribeiro, S. O.; Cunha-Silva, L.; Balula, S. S. Recent advances in lanthanide-coordinated polyoxometalates: From structural overview to functional materials. Coordin. Chem. Rev. 2023, 476, 214914.

[22]

Amin, S. S.; Jones, K. D.; Kibler, A. J.; Damian, H. A.; Cameron, J. M.; Butler, K. S.; Argent, S. P.; Winslow, M.; Robinson, D.; Mitchell, N. J. et al. Diphosphoryl-functionalized polyoxometalates: Structurally and electronically tunable hybrid molecular materials. Angew. Chem. 2023, 135, e202302446.

[23]

Xiao, H. P.; Hao, Y. S.; Li, X. X.; Xu, P.; Huang, M. D.; Zheng, S. T. A water-soluble antimony-rich polyoxometalate with broad-spectrum antitumor activities. Angew. Chem., Int. Ed. 2022, 61, e202210019.

[24]

Chen, J. J.; Vilà-Nadal, L.; Solé-Daura, A.; Chisholm, G.; Minato, T.; Busche, C.; Zhao, T. T.; Kandasamy, B.; Ganin, A. Y.; Smith, R. M. et al. Effective storage of electrons in water by the formation of highly reduced polyoxometalate clusters. J. Am. Chem. Soc. 2022, 144, 8951–8960.

[25]

Yang, F.; Yu, X. J.; Liu, Z. B.; Niu, J. F.; Zhang, T.; Nie, J. K.; Zhao, N. N.; Li, J. P.; Yao, B. H. Preparation of Z-scheme CuBi2O4/Bi2O3 nanocomposites using electrospinning and their enhanced photocatalytic performance. Mater. Today Commun. 2021, 26, 101735.

[26]

Shao, H.; Zhang, Y.; Li, N.; Li, D.; Yu, W. S.; Liu, G. X.; Dong, X. T. One-dimensional LaF3:RE3+ (RE = Eu, Nd) nanostructured phosphors: Controllable synthesis and luminescence properties. Ceram. Int. 2023, 49, 29094–29103.

[27]

Meng, J. Q.; Wang, X. Y.; Yang, X.; Hu, A.; Guo, Y. H.; Yang, Y. X. Enhanced gas-phase photocatalytic removal of aromatics over direct Z-scheme-dictated H3PW12O40/g-C3N4 film-coated optical fibers. Appl. Catal. B: Environ. 2019, 251, 168–180.

[28]

Duployer, B.; Tenailleau, C.; Thimont, Y.; Lenormand, P.; Barnabé, A.; Presmanes, L. Preparation and study of CuBi2O4 thin films by RF magnetron sputtering. Mater. Res. Bull. 2020, 130, 110940.

[29]

Li, J.; Xie, G. Z.; Jiang, J.; Liu, Y. Y.; Chen, C. X.; Li, W. X.; Huang, J. L.; Luo, X. L.; Xu, M.; Zhang, Q. P. et al. Enhancing photodegradation of methyl orange by coupling piezo-phototronic effect and localized surface Plasmon resonance. Nano Energy 2023, 108, 108234.

[30]

Li, H. Y.; Sun, Y. J.; Cai, B.; Gan, S. Y.; Han, D. X.; Niu, L.; Wu, T. S. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B: Environ. 2015, 170−171, 206–214.

[31]

Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

[32]

Shen, Y. B.; Wang, W.; Chen, X. X.; Zhang, B. Q.; Wei, D. Z.; Gao, S. L.; Cui, B. Y. Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route. J. Mater. Chem. A 2016, 4, 1345–1352.

[33]

Xu, H. Y.; Ju, D. X.; Chen, Z. R.; Han, R.; Zhai, T.; Yu, H. Q.; Liu, C. Y.; Wu, X. W.; Wang, J. Q.; Cao, B. Q. A novel hetero-structure sensor based on Au/Mg-doped TiO2/SnO2 nanosheets directly grown on Al2O3 ceramic tubes. Sens. Actuators B: Chem. 2018, 273, 328–335.

[34]

Zhang, C. L.; Wang, J.; Hu, R. J.; Qiao, Q.; Li, X. G. Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate. Sens. Actuators B: Chem. 2016, 222, 1134–1143.

[35]

Chen, T.; Liu, Q. J.; Zhou, Z. L.; Wang, Y. D. A high sensitivity gas sensor for formaldehyde based on CdO and In2O3 doped nanocrystalline SnO2. Nano 2008, 19, 095506.

[36]

Suematsu, K.; Uchino, H.; Mizukami, T.; Watanabe, K.; Shimanoe, K. Oxygen adsorption on ZrO2-loaded SnO2 gas sensors in humid atmosphere. J. Mater. Sci. 2019, 54, 3135–3143.

[37]

Yamazoe, N.; Suematsu, K.; Shimanoe, K. Extension of receptor function theory to include two types of adsorbed oxygen for oxide semiconductor gas sensors. Sens. Actuators B: Chem. 2012, 163, 128–135.

[38]

Wang, Y. T.; Fu, X. Q.; Wang, T. Q.; Li, F.; Li, D.; Yang, Y.; Dong, X. T. Polyoxometalate electron acceptor incorporated improved properties of Cu2ZnSnS4-based room temperature NO2 gas sensor. Sens. Actuators B: Chem. 2021, 348, 130683.

[39]

Majhi, D.; Mishra, A. K.; Das, K.; Bariki, R.; Mishra, B. G. Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr(VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity. Chem. Eng. J. 2021, 413, 127506.

[40]

Tian, J. M.; Jiang, B.; Shao, H.; Wang, Y. T.; Wang, T. Q.; Li, F.; Li, D.; Yang, Y.; Dong, X. T. A new strategy to one-step construct polyoxometalate/semiconductor one-dimensional tandem heterojunctions toward optimized conductometric sensing performances of ethanol gas. Sens. Actuators B: Chem. 2023, 374, 132797.

[41]

Wang, P. Y.; Zou, X. Q.; Tan, H. Q.; Wu, S.; Jiang, L. C.; Zhu, G. S. Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 2018, 6, 5412–5419.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 October 2023
Revised: 23 December 2023
Accepted: 02 January 2024
Published: 17 January 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the Jilin Scientific and Technological Development Program (No. YDZJ202101ZYTS032), China Postdoctoral Science Foundation (No. 2023M731268), the National Natural Science Foundation of China (No. 51902029), and Young Elite Scientists Sponsorship Program by CAST (No. 2022QNRC001).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return