Journal Home > Volume 3 , Issue 2

Electrochemical CO2 reduction reaction (CO2RR) driven by indium-based catalysts can convert CO2 into C1 products with specific energy densities and relatively low mass. However, it is promising to obtain C2 products by introducing Keggin-type polyoxometalates (POMs) that can effectively regulate the proton-coupled electron transfer at the electrode–electrolyte interface. Here, the commercial indium sheets were combined with Keggin-type POMs (H4PVMoW10O40·15H2O, PVMoW10; H5PV2MoW9O40·10H2O, PV2MoW9) to process CO2RR. The highest Faradaic efficiency (FE) toward acetate reached 75.6% in the PVMoW10 system, and the highest FEethanol reached 85.1% in the PV2MoW9 system. The X-ray photoelectron spectroscopy (XPS) results indicated that the electron transfer by the POMs had a positive interaction with the active In0 sites, which provided a special electron channel to improve the FEs of the C2 products in CO2RR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Keggin-type P-W-Mo-V polyoxometalates in electrocatalyzed CO2 reduction using indium electrodes

Show Author's information Yuehua Tai1,§Wencong Sun1,§Dong Yao2 ( )Li Zhou1Wenxue Tian1Haoxun Yan1Chunxiang Li1 ( )
Energy Chemical Engineering Professional Laboratory, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China

§ Yuehua Tai and Wencong Sun contributed equally to this work.

Abstract

Electrochemical CO2 reduction reaction (CO2RR) driven by indium-based catalysts can convert CO2 into C1 products with specific energy densities and relatively low mass. However, it is promising to obtain C2 products by introducing Keggin-type polyoxometalates (POMs) that can effectively regulate the proton-coupled electron transfer at the electrode–electrolyte interface. Here, the commercial indium sheets were combined with Keggin-type POMs (H4PVMoW10O40·15H2O, PVMoW10; H5PV2MoW9O40·10H2O, PV2MoW9) to process CO2RR. The highest Faradaic efficiency (FE) toward acetate reached 75.6% in the PVMoW10 system, and the highest FEethanol reached 85.1% in the PV2MoW9 system. The X-ray photoelectron spectroscopy (XPS) results indicated that the electron transfer by the POMs had a positive interaction with the active In0 sites, which provided a special electron channel to improve the FEs of the C2 products in CO2RR.

Keywords: polyoxometalate, ethanol, acetic acid, electrochemical CO2 reduction reaction, indium

References(36)

[1]

Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[2]

Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.

[3]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[4]

Liu, S. B.; Tao, H. B.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid. ACS Catal. 2018, 8, 1469–1475.

[5]

Yan, C. L.; Luo, W.; Yuan, H. M.; Liu, G. Y.; Hao, R.; Qin, N.; Wang, Z. Q.; Liu, K.; Wang, Z. Y.; Cui, D. H. et al. Stabilizing intermediates and optimizing reaction processes with N doping in Cu2O for enhanced CO2 electroreduction. Appl. Catal. B Environ., 2022, 308, 121191.

[6]

Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.

[7]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indium δ +-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[8]

Ma, W. C.; Xie, S. J.; Zhang, X. G.; Sun, F. F.; Kang, J. C.; Jiang, Z.; Zhang, Q. H.; Wu, D. Y.; Wang, Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 2019, 10, 892.

[9]

Karapinar, D.; Huan, N. T.; Sahraie, N. R.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.

[10]

Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

[11]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[12]

Deng, B. W.; Huang, M.; Zhao, X. L.; Mou, S. Y.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022, 12, 331–362.

[13]

Sun, W. C.; Yao, D.; Tai, Y. H.; Zhou, L.; Tian, W. X.; Yang, M.; Li, C. X. Efficient electrocatalytic CO2 reduction to ethanol through the proton coupled electron transfer process of PV n Mo(12− n ) ( n = 1, 2, 3) over indium electrode. J. Colloid Interface Sci. 2023, 650, 121–131.

[14]

Tian, Y.; Chang, Z. H.; Wang, X. L.; Lin, H. Y.; Zhang, Y. C.; Liu, Q. Q.; Chen, Y. Z. Pseudocapacitance improvement of polymolybdates-based metal-organic complexes via modification with hydrogen molybdenum bronze by electrochemical treatment. Chem. Eng. J. 2022, 428, 132380.

[15]

Lang, Z. L.; Miao, J.; Lan, Y. C.; Cheng, J. J.; Xu, X. Q.; Cheng, C. Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction. APL Mater. 2020, 8, 120702.

[16]

Sun, W. C.; Tai, Y. H.; Tian, W. X.; Zhou, L.; Li, C. X. Electrochemical CO2 reduction to ethanol: Synergism of (n-Bu4N)3SVMo11O40 and an in catalyst. Electrochim. Acta 2023, 445, 142067.

[17]

Zha, B.; Li, C. X.; Li, J. J. Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst. J. Catal. 2020, 382, 69–76.

[18]

Wang, S. S.; Liu, W.; Wan, Q. X.; Liu, Y. Homogeneous epoxidation of lipophilic alkenes by aqueous hydrogen peroxide: Catalysis of a Keggin-type phosphotungstate-functionalized ionic liquid in amphipathic ionic liquid solution. Green Chem. 2009, 11, 1589–1594.

[19]

Tong, X.; Tian, N. Q.; Zhu, W. M.; Wu, Q. Y.; Cao, F. H.; Yan, W. F. Synthesis, crystal structure and conductive performance of tungstovanadophosphoric heteropoly acid H4PW11VO40·8H2O. J. Alloys Compd. 2012, 544, 37–41.

[20]

Zhu, W. S.; Huang, W. L.; Li, H. M.; Zhang, M.; Jiang, W.; Chen, G. Y.; Han, C. R. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Process. Technol. 2011, 92, 1842–1848.

[21]

Li, X.; Ren, Y. H.; Weng, Z. W.; Yue, B.; He, H. Y. Stabilisation of high-valent Cu3+ in a Keggin-type polyoxometalate. Chem. Commun. 2020, 56, 2324–2327.

[22]

Li, C. X.; Zhang, Y.; O’Halloran, K. P.; Zhang, J. W.; Ma, H. Y. Electrochemical behavior of vanadium-substituted Keggin-type polyoxometalates in aqueous solution. J. Appl. Electrochem. 2009, 39, 421–427.

[23]

Ji, H. M.; Zhu, L. D.; Liang, D. D.; Liu, Y.; Cai, L. L.; Zhang, S. W.; Liu, S. X. Use of a 12-molybdovanadate(V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor. Electrochim. Acta 2009, 54, 7429–7434.

[24]

Li, C. X.; Zha, B.; Li, J. J. A SiW11Mn-assisted indium electrocatalyst for carbon dioxide reduction into formate and acetate. J. CO2 Util. 2020, 38, 299–305.

[25]

Du, J.; Lang, Z. L.; Ma, Y. Y.; Tan, H. Q.; Liu, B. L.; Wang, Y. H.; Kang, Z. H.; Li, Y. G. Polyoxometalate-based electron transfer modulation for efficient electrocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 3007–3015.

[26]

Sun, W. C.; Li, C. X.; Zhao, H. F. The targeted multi-electrons transfer for acetic acid and ethanol obtained with (n-Bu4N)3SVW11O40 and in synergetic catalysis in CO2 electroreduction. J. Power Sources 2022, 517, 230665.

[27]

White, J. L.; Bocarsly, A. B. Enhanced carbon dioxide reduction activity on indium-based nanoparticles. J. Electrochem. Soc. 2016, 163, H410–H416.

[28]

Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.

[29]

Baydaroglu, F. O.; Özdemir, E.; Gürek, A. G. Polypyrrole supported Co-W-B nanoparticles as an efficient catalyst for improved hydrogen generation from hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2022, 47, 9643–9652.

[30]

Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. N.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cu δ + Species. Angew. Chem., Int. Ed. 2022, 61, e202205909.

[31]

Wang, Q. R.; Yang, X. F.; Zang, H.; Chen, F. R.; Wang, C.; Yu, N.; Geng, B. Y. Metal-organic framework-derived biIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate. Inorg. Chem., 2022, 61, 12003–12011.

[32]

Machan, C. W.; Sampson, M. D.; Chabolla, S. A.; Dang, T.; Kubiak, C. P. Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry. Organometallics 2014, 33, 4550–4559.

[33]

Cheng, Q.; Huang, M.; Xiao, L.; Mou, S. Y.; Zhao, X. L.; Xie, Y. Q.; Jiang, G. D.; Jiang, X. Y.; Dong, F. Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 2023, 13, 4021–4029.

[34]

Ding, L. C.; Zhu, N. N.; Hu, Y.; Chen, Z.; Song, P.; Sheng, T.; Wu, Z. C.; Xiong, Y. J. Over 70% faradaic efficiency for CO2 electroreduction to ethanol enabled by potassium dopant-tuned interaction between copper sites and intermediates. Angew. Chem., Int. Ed. 2022, 61, e202209268.

[35]

Deng, Y. L.; Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 2017, 7, 7873–7889.

[36]

Guo, S. Y.; Liu, Y. C.; Huang, Y.; Wang, H.; Murphy, E.; Delafontaine, L.; Chen, J. Z.; Zenyuk, I. V.; Atanassov, P. Promoting electrolysis of carbon monoxide toward acetate and 1-propanol in flow electrolyzer. ACS Energy Lett. 2023, 8, 935–942.

File
0051_ESM.pdf (1.8 MB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 18 July 2023
Revised: 27 November 2023
Accepted: 30 November 2023
Published: 02 January 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return