Journal Home > Volume 3 , Issue 1

N-Heterocycle compounds are crucial scaffolds in natural products, synthetic molecules, agricultural chemicals, and pharmaceuticals. Hence, green catalytic systems for the synthesis of N-heterocycles have been widely researched in organic synthesis and industrial catalysis. Polyoxometalates (POMs) are polynuclear metal–oxygen clusters with diverse structures and physicochemical properties. POMs exhibit multiple advantageous properties such as adjustable acidity, redox properties, high thermal stability, and nontoxic nature. Therefore, POMs have been widely investigated for their application in N-heterocycles synthesis and held great potential for industrial applications. In this review, we summarize recent advances (mainly from 2010 to 2023) in the synthesis of N-heterocycles, such as pyrroles, indoles, pyridines, and benzodiazepines, catalyzed by heteropolyacids (HPAs), modified HPA catalysts, and transition metal-modified POMs. The prospects of POM-based catalytic systems for the synthesis of N-heterocycles are also outlined.


menu
Abstract
Full text
Outline
About this article

Polyoxometalate catalysts for the synthesis of N-heterocycles

Show Author's information Qilong HuKe LiXuejiao ChenYufeng Liu ( )Guoping Yang( )
Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Material Science, East China University of Technology, Nanchang 330013, China

Abstract

N-Heterocycle compounds are crucial scaffolds in natural products, synthetic molecules, agricultural chemicals, and pharmaceuticals. Hence, green catalytic systems for the synthesis of N-heterocycles have been widely researched in organic synthesis and industrial catalysis. Polyoxometalates (POMs) are polynuclear metal–oxygen clusters with diverse structures and physicochemical properties. POMs exhibit multiple advantageous properties such as adjustable acidity, redox properties, high thermal stability, and nontoxic nature. Therefore, POMs have been widely investigated for their application in N-heterocycles synthesis and held great potential for industrial applications. In this review, we summarize recent advances (mainly from 2010 to 2023) in the synthesis of N-heterocycles, such as pyrroles, indoles, pyridines, and benzodiazepines, catalyzed by heteropolyacids (HPAs), modified HPA catalysts, and transition metal-modified POMs. The prospects of POM-based catalytic systems for the synthesis of N-heterocycles are also outlined.

Keywords: catalysis, N-heterocycles, polyoxometalates, organic transformation

References(122)

[1]

Omwoma, S.; Gore, C. T.; Ji, Y. C.; Hu, C. W.; Song, Y. F. Environmentally benign polyoxometalate materials. Coord. Chem. Rev. 2015, 286, 17–29.

[2]

Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048.

[3]

Gouzerh, P.; Proust, A. Main-group element, organic, and organometallic derivatives of polyoxometalates. Chem. Rev. 1998, 98, 77–112.

[4]

Liu, Z. J.; Wang, X. L.; Qin, C.; Zhang, Z. M.; Li, Y. G.; Chen, W. L.; Wang, E. B. Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coord. Chem. Rev. 2016, 313, 94–110.

[5]

Walsh, J. J.; Bond, A. M.; Forster, R. J.; Keyes, T. E. Hybrid polyoxometalate materials for photo(electro-) chemical applications. Coord. Chem. Rev. 2016, 306, 217–234.

[6]

Yang, G. P.; Li, K.; Hu, C. W. Recent advances in uranium-containing polyoxometalates. Inorg. Chem. Front. 2022, 9, 5408–5433.

[7]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[8]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[9]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[10]

Zhang, Q.; Li, F. Y.; Xu, L. Application of polyoxometalates in third-generation solar cells. Polyoxometalates 2023, 2, 9140018.

[11]

Kasprzak, M. S.; Leroi, G. E.; Crouch, S. R. Raman spectroscopic investigation of isomeric and mixed-valence heteropolyanions. Appl. Spectrosc. 1982, 36, 285–289.

[12]

Taleghani, S.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. Tuning the topology of hybrid inorganic-organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective. Coord. Chem. Rev. 2016, 309, 84–106.

[13]

Escobar, A. M.; Blustein, G.; Luque, R.; Romanelli, G. P. Recent applications of heteropolyacids and related compounds in heterocycle synthesis. contributions between 2010 and 2020. Catalysts 2021, 11, 291.

[14]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[15]

Lian, L. F.; Zhang, H. Y.; An, S.; Chen, W.; Song, Y. F. Polyoxometalates-based heterogeneous catalysts in acid catalysis. Sci. China Chem. 2021, 64, 1117–1130.

[16]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[17]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[18]

Zhang, S. W.; Ou, F. X.; Ning, S. G.; Cheng, P. Polyoxometalate-based metal-organic frameworks for heterogeneous catalysis. Inorg. Chem. Front. 2021, 8, 1865–1899.

[19]

Mizuno, N.; Misono, M. Heterogeneous Catalysis. Chem. Rev. 1998, 98, 199–218.

[20]

Okuhara, T.; Mizuno, N.; Misono, M. Catalytic chemistry of heteropoly compounds. Adv. Catal. 1996, 41, 113–252.

[21]

Ma, Y. B.; Gao, F.; Xiao, W. R.; Li, N.; Li, S. J.; Yu, B.; Chen, X. N. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin. Chem. Lett. 2022, 33, 4395–4399.

[22]

Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal. 2018, 8, 10809–10825.

[23]

Tian, Z. Y.; Han, X. Q.; Du, J.; Li, Z. B.; Ma, Y. Y.; Han, Z. G. Bio-inspired FeMo2S4 microspheres as bifunctional electrocatalysts for boosting hydrogen oxidation/evolution reactions in alkaline solution. ACS Appl. Mater. Interfaces. 2023, 15, 11853–11865.

[24]

Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274.

[25]

Wang, S.; Yuan, X. H.; Wang, S. Q.; Zhao, W.; Chen, X. B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem. 2021, 214, 113218.

[26]

Liu, Y. F.; Li, C.; Yang, G. P. Synthesis of heterocycles from 2-acylbenzoic acids. Eur. J. Org. Chem. 2023, 26, e202300452.

[27]

Yamamoto, Y. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes. Chem. Soc. Rev. 2014, 43, 1575–1600.

[28]

Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev. 2015, 44, 3505–3521.

[29]

Zhang, Y. C.; Jiang, F.; Shi, F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: Strategies, reactions, and outreach. Acc. Chem. Res. 2020, 53, 425–446.

[30]

Kozhevnikov, I. V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998, 98, 171–198.

[31]

Okuhara, T.; Nishimura, T.; Watanabe, H.; Misono, M. Insoluble heteropoly compounds as highly active catalysts for liquid-phase reactions. J. Mol. Catal. 1992, 74, 247–256.

[32]

Izumi, Y.; Matsuo, K.; Urabe, K. Efficient homogeneous acid catalysis of heteropoly acid and its characterization through ether cleavage reactions. J. Mol. Catal. 1983, 18, 299–314.

[33]

Ahmad, E.; Khan, T. S.; Alam, M. I.; Pant, K. K.; Ali Haider, M. Understanding reaction kinetics, deprotonation and solvation of brønsted acidic protons in heteropolyacid catalyzed synthesis of biorenewable alkyl levulinates. Chem. Eng. J. 2020, 400, 125916.

[34]

Bhat, N. S.; Mal, S. S.; Dutta, S. Recent advances in the preparation of levulinic esters from biomass-derived furanic and levulinic chemical platforms using heteropoly acid (HPA) catalysts. Mol. Catal. 2021, 505, 111484.

[35]

Yang, G. P.; Li, K.; Lin, X. L.; Li, Y. J.; Cui, C. X.; Li, S. X.; Cheng, Y. Y.; Liu, Y. F. Regio- and stereoselective synthesis of ( Z)-3-ylidenephthalides via H3PMo12O40-catalyzed cyclization of 2-acylbenzoic acids with benzylic alcohols. Chin. J. Chem. 2021, 39, 3017–3022.

[36]

Bennardi, D. O.; Romanelli, G. P.; Sathicq, Á. G.; Autino, J. C.; Baronetti, G. T.; Thomas, H. J. Wells-Dawson heteropolyacid as reusable catalyst for sustainable synthesis of flavones. Appl. Catal. A Gen. 2011, 404, 68–73.

[37]

Motamedi, R.; Baghbani, S.; Bamoharram, F. F. Catalytic method for synthesis of benzopyrano[3,2-c]chromene-6,8-dione derivatives by heteropoly acids. Synth. Commun. 2012, 42, 1604–1612.

[38]

Rajguru, D.; Keshwal, B. S.; Jain, S. H6P2W18O62·18H2O: A green and reusable catalyst for one-pot synthesis of pyrano[4,3-b]pyrans in water. Chin. Chem. Lett. 2013, 24, 1033–1036.

[39]

Zakeri, M.; Heravi, M. M.; Oskooie, H. A.; Bamoharram, F. F. Catalytic performance of heteropolyacids as efficient and eco-friendly catalysts for the one-pot synthesis of benzopyran derivatives. Synth. React. Inorg. Met. Organ. Nano Met. Chem. 2010, 40, 916–921.

[40]

Wang, M. Z.; Xu, H.; Liu, T. W.; Feng, Q.; Yu, S. J.; Wang, S. H.; Li, Z. M. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur. J. Med. Chem. 2011, 46, 1463–1472.

[41]

Gharib, A.; Jahangir, M.; Roshani, M. A facile synthesis of calix[4]pyrroles using heteropolyacids as green, eco- friendly, reusable and recyclable catalyst. Bulg. Chem. Commun. 2011, 44, 113–117.

[42]

Gharib, A.; Jahangir, M.; Scheeren, J. Novel catalytic method synthesis of calix[4]pyrroles using Preyssler and Wells-Dawson heteropolyacids. Pol. J. Chem. Technol. 2011, 13, 70–73.

[43]

Soltani, M.; Mohammadpoor-Baltork, I.; Khosropour, A. R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Convenient synthesis of polysubstituted pyrroles and symmetrical and unsymmetrical bis-pyrroles catalyzed by H3PW12O40. Compt. Rend. Chim. 2016, 19, 381–389.

[44]

Basu, S.; Ghosh, T.; Maity, S.; Ghosh, P.; Mukhopadhyay, C. An efficient phosphotungstic acid catalysed synthesis of 4,5-dioxopyrrolidines and study of the mechanistic effect of the solvent on the reaction. ChemSelect 2019, 4, 5763–5767.

[45]

Heravi, M. M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Adv. 2017, 7, 52852–52887.

[46]

Beheshtiha, Y. S.; Heravi, M. M.; Saeedi, M.; Fallah, A.; Bamoharram, F. F. Heteropolyacid catalyzed synthesis of indole derivatives via Fischer indole synthesis. Gazi Univ. J. Sci. 2011, 24, 709–714.

[47]

Liu, Y. F.; Zeng, G. D.; Cheng, Y. T.; Chen, L.; Liu, Y. H.; Wei, Y. G.; Yang, G. P. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3,3-disubstituted isoindolinones. Chin. Chem. Lett. 2024, 35, 108480.

[48]

Bhagat, J.; Singh, N.; Nishimura, N.; Shimada, Y. A comprehensive review on environmental toxicity of azole compounds to fish. Chemosphere 2021, 262, 128335.

[49]

Jang, J.; Kim, D. H.; Min, C. M.; Pak, C.; Lee, J. S. Azole structures influence fuel cell performance of phosphoric acid-doped poly(phenylene oxide) with azoles on side chains. J. Membr. Sci. 2020, 605, 118096.

[50]

Nong, Q. Y.; Liu, Y. A.; Qin, L. T.; Liu, M.; Mo, L. Y.; Liang, Y. P.; Zeng, H. H. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. Chemosphere 2021, 262, 127793.

[51]

Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg. Chem. 2020, 104, 104240.

[52]

Oskooie, H. A.; Amini, M.; Heravi, M. M.; Bamoharram, F. F. One-pot synthesis of 3-aminoimidazo[1,2- a]pyridines catalyzed by heteropolyacids. Chin. J. Chem. 2010, 28, 299–302.

[53]

Feng, X.; Yang, T.; He, X.; Yu, B.; Hu, C. W. One-pot synthesis of trifluoromethylated benzimidazolines catalyzed by phosphotungstic acid with a low catalyst loading. Appl. Organomet. Chem. 2018, 32, e4314.

[54]

Arroyo, N. R.; Rozas, M. F.; Vázquez, P.; Romanelli, G. P.; Mirífico, M. V. Solvent-free condensation reactions to synthesize five-membered heterocycles containing the sulfamide fragment. Synthesis 2016, 48, 1344–1352.

[55]

Yang, G. P.; Xie, X. J.; Cheng, M. Y.; Gao, X. F.; Lin, X. L.; Li, K.; Cheng, Y. Y.; Liu, Y. F. H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3,4-disubstituted 1 H-pyrazoles. Chin. Chem. Lett. 2022, 33, 1483–1487.

[56]

Shaker, M.; Davoodnia, A.; Vahedi, H.; Lari, J.; Roshani, M.; Mallaeke, H. Synthesis of some new 1,3,4,5-tetrasubstituted-1h-imidazole-2(3 H)-thiones via a facile one-pot three-component reaction in the presence of solvent and heteropolyacids. J. Heterocycl. Chem. 2017, 54, 313–317.

[57]

Godhani, D. R.; Dobariya, P. B.; Jogel, A. A.; Sanghani, A. M.; Mehta, J. P. An efficient synthesis, characterization, and antimicrobial screening of tetrahydropyrimidine derivatives. Med. Chem. Res. 2014, 23, 2417–2425.

[58]

Klusa, V. Atypical 1,4-dihydropyridine derivatives, an approach to neuroprotection and memory enhancement. Pharmacol. Res. 2016, 113, 754–759.

[59]

Malek, R.; Maj, M.; Wnorowski, A.; Jóźwiak, K.; Martin, H.; Iriepa, I.; Moraleda, I.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Multi-target 1,4-dihydropyridines showing calcium channel blockade and antioxidant capacity for Alzheimer’s disease therapy. Bioorg. Chem. 2019, 91, 103205.

[60]

Sanchez, L. M.; Sathicq, A. G.; Thomas, H. J.; Romanelli, G. P. Synthesis of dihydropyridines: Patented catalysts and biological applications. Rec. Patent. Catal. 2012, 1, 119–128.

[61]

Gharib, A.; Jahangir, M.; Roshani, M.; Scheeren, J. W. Catalytic synthesis of fused 1,4-dihydropyridines and 1,4-dihydropyridine derivatives using preyssler heteropolyacids catalyst. Synth. Commun. 2012, 42, 3311–3320.

[62]

Samzadeh-Kermani, A. Heteropolyacid-catalyzed one-pot synthesis of 2-pyridone derivatives. Synlett 2016, 27, 461–464.

[63]

Sanchez, L. M.; Sathicq, Á. G.; Jios, J. L.; Baronetti, G. T.; Thomas, H. J.; Romanelli, G. P. Solvent-free synthesis of functionalized pyridine derivatives using Wells-Dawson heteropolyacid as catalyst. Tetrahedron Lett. 2011, 52, 4412–4416.

[64]

He, Z. X.; Zhao, T. Q.; Gong, Y. P.; Zhang, X.; Ma, L. Y.; Liu, H. M. Pyrimidine: A promising scaffold for optimization to develop the inhibitors of ABC transporters. Eur. J. Med. Chem. 2020, 200, 112458.

[65]

Pathania, S.; Rawal, R. K. Pyrrolopyrimidines: An update on recent advancements in their medicinal attributes. Eur. J. Med. Chem. 2018, 157, 503–526.

[66]

Wang, L.; Tang, J.; Huber, A. D.; Casey, M. C.; Kirby, K. A.; Wilson, D. J.; Kankanala, J.; Xie, J. S.; Parniak, M. A.; Sarafianos, S. G. et al. 6-Arylthio-3-hydroxypyrimidine-2,4-diones potently inhibited HIV reverse transcriptase-associated RNase H with antiviral activity. Eur. J. Med. Chem. 2018, 156, 652–665.

[67]

Heravi, M. M.; Derikvand, F.; Ranjbar, L.; Bamoharram, F. F. H6P2W18O62-18H2O, a green and reusable catalyst for the three-component, one-pot synthesis of 4,6-diarylpyrimidin-2(1 H)-ones under solvent-free conditions. Synth. Commun. 2010, 40, 1256–1263.

[68]

Heravi, M. M.; Zadsirjan, V. Recent advances in Biginelli-type reactions. Curr. Org. Chem. 2020, 24, 1331–1366.

[69]

Rezayati, S.; Kalantari, F.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A. Magnetic silica-coated picolylamine copper complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)]-catalyzed Biginelli annulation reaction. Inorg. Chem. 2022, 61, 992–1010.

[70]

Saher, L.; Makhloufi-Chebli, M.; Dermeche, L.; Boutemeur-Khedis, B.; Rabia, C.; Silva, A. M. S.; Hamdi, M. Keggin and Dawson-type polyoxometalates as efficient catalysts for the synthesis of 3,4-dihydropyrimidinones: Experimental and theoretical studies. Tetrahedron Lett. 2016, 57, 1492–1496.

[71]

D’Alessandro, O.; Sathicq, Á. G.; Palermo, V.; Sanchez, L. M.; Thomas, H.; Vazquez, P.; Constantieux, T.; Romanelli, G. Doped Keggin heteropolyacids as catalyst in the solvent-free, multicomponent synthesis of substituted 3,4-dihydropyrimidin-2-(1 H)-ones. Curr. Org. Chem. 2012, 16, 2763–2769.

[72]

Fang, Z. D.; Fang, D.; Tan, Y. Y. Synthesis of 2-substituted 7-methylpyrimido[4,5- d]pyrimidin-4(3 H)-ones catalyzed by heteropolyacids. Res. Chem. Intermed. 2015, 41, 1203–1211.

[73]

Sarnikar, Y. P.; Biradar, D. O.; Mane, Y. D.; Khade, B. C. Highly efficient direct synthesis of scaffold 9a,10,12,12a-tetrahydrobenzo[ b]cyclopenta[ f]pyrrolo[1,2- d][1,4]diazepinone by using active phoshomolybdic acid. J. Heterocycl. Chem. 2019, 56, 1111–1116.

[74]

Da Silva, M. J.; Chaves, D. M.; Júlio, A. A.; Rodrigues, F. A.; Bruziquesi, C. G. O. Sn(II)-exchanged Keggin silicotungstic acid-catalyzed etherification of glycerol and ethylene glycol with alkyl alcohols. Ind. Eng. Chem. Res. 2020, 59, 9858–9868.

[75]

Liu, Y. F.; Cao, G. M.; Chen, L.; Li, K.; Lin, X. L.; Xu, X. X.; Le, Z. G.; Yang, G. P. Synthesis of 3,3′-disubstituted isobenzofuran-1(3 H)-ones via Cs0.5H2.5PW12O40-catalyzed difunctionalization of carbonyls. Adv. Synth. Catal. 2022, 364, 1460–1464.

[76]

Wilke, T.; Barteau, M. A. Dehydration and oxidation of alcohols by supported polyoxometalates: Effects of mono-and multivalent cation exchange on catalyst acidity and activity. Ind. Eng. Chem. Res. 2019, 58, 14752–14760.

[77]

Lai, F. J.; Yan, F.; Wang, P. J.; Wang, S. B.; Li, S.; Zhang, Z. T. Highly efficient conversion of cellulose into 5-hydroxymethylfurfural using temperature-responsive Ch n H5− n CeW12O40 ( n = 1–5) catalysts. Chem. Eng. J. 2020, 396, 125282.

[78]

Song, C. H.; Liu, S. J.; Peng, X. W.; Long, J. X.; Lou, W. Y.; Li, X. H. Catalytic conversion of carbohydrates to levulinate ester over heteropolyanion-based ionic liquids. ChemSusChem 2016, 9, 3307–3316.

[79]

Yang, G. P.; Li, K.; Zeng, K.; Li, Y. J.; Yu, T.; Liu, Y. F. Heteropolyacid ionic liquid heterogeneously catalyzed synthesis of isochromans via oxa-pictet-spengler cyclization in dimethyl carbonate. RSC Adv. 2021, 11, 10610–10614.

[80]

Yang, G. P.; He, X.; Yu, B.; Hu, C. W. Cu1.5PMo12O40-catalyzed condensation cyclization for the synthesis of substituted pyrazoles. Appl. Organomet. Chem. 2018, 32, e4532.

[81]

Purnima, K. V.; Sreenu, D.; Bhasker, N.; Nagaiah, K.; Lingaiah, N.; Reddy, B. V. S.; Yadav, J. S. Copper salt of 12-tungstophosphoric acid: An efficient and reusable heteropoly acid for the click chemistry. Chin. J. Chem. 2013, 31, 534–538.

[82]

Vahdat, S. M.; Khaksar, S.; Akbari, M.; Baghery, S. Sulfonated organic heteropolyacid salts as a highly efficient and green solid catalysts for the synthesis of 1,8-dioxo-decahydroacridine derivatives in water. Arab. J. Chem. 2019, 12, 1515–1521.

[83]

Tayebee, R.; Abdizadeh, M. F.; Maleki, B.; Shahri, E. Heteropolyacid-based ionic liquid [Simp]3PW12O40 nanoparticle as a productive catalyst for the one-pot synthesis of 2 H-indazolo[2,1- b]phthalazine-triones under solvent-free conditions. J. Mol. Liq. 2017, 241, 447–455.

[84]

Esmaeilpour, M.; Javidi, J.; Zandi, M. One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4@SiO2-imid-PMAn magnetic porous nanospheres as a recyclable catalyst. New J. Chem. 2015, 39, 3388–3398.

[85]

Song, D. Y.; An, S.; Sun, Y. N.; Zhang, P. P.; Guo, Y. H.; Zhou, D. D. Ethane-bridged organosilica nanotubes functionalized with arenesulfonic acid and phenyl groups for the efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. ChemCatChem 2016, 8, 2037–2048.

[86]

Tayebee, R.; Amini, M. M.; Ghadamgahi, M.; Armaghan, M. H5PW10V2O40/Pip-SBA-15: A novel reusable organic-inorganic hybrid material as potent Lewis acid catalyst for one-pot solvent-free synthesis of 3,4-dihydropyrimidinones. J. Mol. Catal. A Chem. 2013, 366, 266–274.

[87]

Li, B. L.; Zhang, H. Y.; Di, J. Q.; Zhang, Z. H. Polyoxometalate immobilized on MOF-5 as an environment-friendly catalyst for the synthesis of poly-functionalized 3-pyrrolin-2-ones. Appl. Organomet. Chem. 2021, 35, e6064.

[88]

Portilla-Zúñiga, O.; Sathicq, Á.; Martínez, J.; Rojas, H.; De Geronimo, E.; Luque, R.; Romanelli, G. P. Novel bifunctional mesoporous catalysts based on preyssler heteropolyacids for green pyrrole derivative synthesis. Catalysts 2018, 8, 419.

[89]

Zhang, D. W.; Ren, L.; Liu, A. L.; Li, W. Y.; Liu, Y. X.; Gu, Q. One-pot solvent-free synthesis of 1,3,5-trisubstituted 1 H-pyrazoles catalyzed by H3[PW12O40]/SiO2 under microwave irradiation. Monatsh. Chem. 2022, 153, 257–266.

[90]

Maleki, B.; Eshghi, H.; Khojastehnezhad, A.; Tayebee, R.; Ashrafi, S. S.; Kahoo, G. E.; Moeinpour, F. Silica coated magnetic NiFe2O4 nanoparticle supported phosphomolybdic acid; synthesis, preparation and its application as a heterogeneous and recyclable catalyst for the one-pot synthesis of tri- and tetra-substituted imidazoles under solvent free conditions. RSC Adv. 2015, 5, 64850–64857.

[91]

Gorsd, M.; Sathicq, G.; Romanelli, G.; Pizzio, L.; Blanco, M. Tungstophosphoric acid supported on core-shell polystyrene-silica microspheres or hollow silica spheres catalyzed trisubstituted imidazole synthesis by multicomponent reaction. J. Mol. Catal. A Chem. 2016, 420, 294–302.

[92]

Masteri-Farahani, M.; Ezabadi, A.; Mazarei, R.; Ataeinia, P.; Shahsavarifar, S.; Mousavi, F. A new nanocomposite catalyst based on clay-supported heteropolyacid for the green synthesis of 2,4,5-trisubstituted imidazoles. Appl. Organomet. Chem. 2020, 34, e5727.

[93]

Ruiz, D. M.; T. Baronetti, G.; J. Thomas, H.; P. Romanelli, G. H6P2W12O62·24H2O supported on silica: A powerful and reusable catalyst for the synthesis of 4-arylidene-2-phenyl-5(4)-oxazolones (azlactones). Curr. Catal. 2012, 1, 67–72.

[94]

Rostami, M.; Khosropour, A.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I. Organic-inorganic hybrid polyoxometalates: Efficient, heterogeneous and reusable catalysts for solvent-free synthesis of azlactones. Appl. Catal. A Gen. 2011, 397, 27–34.

[95]

Sadjadi, S.; Heravi, M. M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liq. 2017, 231, 98–105.

[96]

Sadjadi, S.; Heravi, M. M.; Daraie, M. Heteropolyacid supported on amine-functionalized halloysite nano clay as an efficient catalyst for the synthesis of pyrazolopyranopyrimidines via four-component domino reaction. Res. Chem. Intermed. 2017, 43, 2201–2214.

[97]

Ayati, A.; Heravi, M. M.; Daraie, M.; Tanhaei, B.; Bamoharram, F. F.; Sillanpaa, M. H3PMo12O40 immobilized chitosan/Fe3O4 as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyrano-pyrazole derivatives. J. Iran. Chem. Soc. 2016, 13, 2301–2308.

[98]

Mozafari, R.; Heidarizadeh, F. Phosphotungstic acid supported on SiO2@NHPhNH2 functionalized nanoparticles of MnFe2O4 as a recyclable catalyst for the preparation of tetrahydrobenzo[b]pyran and indazolo[2,1-b]phthalazine-triones. Polyhedron 2019, 162, 263–276.

[99]

Hashemzadeh, A.; Amini, M. M.; Tayebee, R.; Sadeghian, A.; Durndell, L. J.; Isaacs, M. A.; Osatiashtiani, A.; Parlett, C. M. A.; Lee, A. F. A magnetically-separable H3PW12O40@Fe3O4/EN-MIL-101 catalyst for the one-pot solventless synthesis of 2 H-indazolo[2,1-b] phthalazine-triones. Mol. Catal. 2017, 440, 96–106.

[100]

Safari, J.; Tavakoli, M.; Ghasemzadeh, M. A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst. J. Organomet. Chem. 2019, 880, 75–82.

[101]

Sadjadi, S.; Heravi, M. M.; Malmir, M. Heteropolyacid@creatin-halloysite clay: An environmentally friendly, reusable and heterogeneous catalyst for the synthesis of benzopyranopyrimidines. Res. Chem. Intermed. 2017, 43, 6701–6717.

[102]

Sathicq, Á. G.; Ruiz, D. M.; Constantieux, T.; Rodriguez, J.; Romanelli, G. P. Preyssler heteropoly acids encapsulated in a silica framework for an efficient preparation of fluorinated hexahydropyrimidine derivatives under solvent-free conditions. Synlett 2014, 25, 881–883.

[103]

Palermo, V.; Sathicq, Á.; Constantieux, T.; Rodríguez, J.; Vázquez, P.; Romanelli, G. New vanadium Keggin heteropolyacids encapsulated in a silica framework: Recyclable catalysts for the synthesis of highly substituted hexahydropyrimidines under suitable conditions. Catal. Lett. 2015, 145, 1022–1032.

[104]

Chopda, L. V.; Dave, P. N. 12-Tungstosilicic Acid H4[W12SiO40] over natural bentonite as a heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1 H)-ones. ChemSelect 2020, 5, 2395–2400.

[105]

Moussa, A.; Rahmati, A. One-Pot synthesis of benzo[4,5]imidazo[1,2- a]pyrimidin-2-ones using a hybrid catalyst supported on magnetic nanoparticles in green solvents. ChemistryOpen 2021, 10, 764–774.

[106]

Samzadeh-Kermani, A. Yield of benzothiazine derivatives and catalysis by heteropolyacids. J. Sulfur Chem. 2016, 37, 692–701.

[107]

Morales, D. M.; Frenzel, R. A.; Romanelli, G. P.; Pizzio, L. R. Synthesis and characterization of nanoparticulate silica with organized multimodal porous structure impregnated with 12-phosphotungstic acid for its use in heterogeneous catalysis. Mol. Catal. 2020, 481, 110210.

[108]

Morales, M. D.; Infantes-Molina, A.; Lázaro-Martínez, J. M.; Romanelli, G. P.; Pizzio, L. R.; Rodríguez-Castellón, E. Heterogeneous acid catalysts prepared by immobilization of H3PW12O40 on silica through impregnation and inclusion, applied to the synthesis of 3 H-1,5-benzodiazepines. Mol. Catal. 2020, 485, 110842.

[109]

Du, W. X.; Liu, Y. F.; Sun, J. J.; Wang, H. Y.; Yang, G. P.; Zhang, D. D. Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction. Dalton Trans. 2022, 51, 9988–9993.

[110]

Du, W. X.; Cheng, M. Y.; Li, K.; Ma, Y. C.; Shi, J. W.; Zhang, D. D. Insight into hexanuclear peroxotantalum complexes: Synthesis, characterization, and efficient catalyst for amidation reaction. Tungsten 2022, 4, 158–167.

[111]

Yu, M. Y.; Guo, T. T.; Shi, X. C.; Yang, J.; Xu, X. X.; Ma, J. F.; Yu, Z. T. Polyoxometalate-bridged Cu(I)- and Ag(I)-thiacalix[4]arene dimers for heterogeneous catalytic oxidative desulfurization and azide-alkyne “Click” reaction. Inorg. Chem. 2019, 58, 11010–11019.

[112]

Cheng, M. Y.; Liu, Y. F.; Li, N.; Shi, J. W.; Du, W. X.; Zhang, D. D.; Yang, G. P.; Wang, G.; Niu, J. Y. Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction. Chem. Commun. 2022, 58, 1167–1170.

[113]

Lu, B. B.; Yang, J.; Che, G. B.; Pei, W. Y.; Ma, J. F. Highly stable copper(I)-based metal-organic framework assembled with resorcin[4]arene and polyoxometalate for efficient heterogeneous catalysis of azide-alkyne “Click” reaction. ACS Appl. Mater. Interfaces 2018, 10, 2628–2636.

[114]

Li, K.; Liu, Y. F.; Lin, X. L.; Yang, G. P. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg. Chem. 2022, 61, 6934–6942.

[115]

Yang, G. P.; Shang, S. X.; Yu, B.; Hu, C. W. Ce(III)-Containing tungstotellurate(VI) with a sandwich structure: An efficient Lewis acid-base catalyst for the condensation cyclization of 1,3-diketones with hydrazines/hydrazides or diamines. Inorg. Chem. Front. 2018, 5, 2472–2477.

[116]

Yao, M. Y.; Liu, Y. F.; Li, X. X.; Yang, G. P.; Zheng, S. T. The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid-base catalytic activity. Chem. Commun. 2022, 58, 5737–5740.

[117]

Cheng, M. Y.; Liu, Y. F.; Du, W. X.; Shi, J. W.; Li, J. H.; Wang, H. Y.; Li, K.; Yang, G. P.; Zhang, D. D. Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its high-efficiency catalysis for pyrazoles. Chin. Chem. Lett. 2022, 33, 3899–3902.

[118]

Li, K.; Lin, X. L.; Zeng, K.; Gao, X. F.; Cen, W.; Liu, Y. F.; Yang, G. P. Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1 H-pyrazoles. Tungsten 2022, 4, 149–157.

[119]

Yang, G. P.; Zhang, X. L.; Liu, Y. F.; Zhang, D. D.; Li, K.; Hu, C. W. Self-assembly of Keggin-type U(VI)-containing tungstophosphates with a sandwich structure: An efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorg. Chem. Front. 2021, 8, 4650–4656.

[120]

Zhou, J.; Yu, T.; Li, K.; Zeng, K.; Yang, G. P.; Hu, C. W. Two U(VI)-Containing Silicotungstates with Sandwich Structures: Lewis Acid-Base synergistic catalyzed synthesis of benzodiazepines and pyrazoles. Inorg. Chem. 2022, 61, 3050–3057.

[121]

Liu, Y. F.; Li, K.; Lian, H. Y.; Chen, X. J.; Zhang, X. L.; Yang, G. P. Self-Assembly of a U(VI)-containing polytungstate tetramer with lewis acid-base catalytic activity for a dehydration condensation reaction. Inorg. Chem. 2022, 61, 20358–20364.

[122]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units { α-SiW9} and { γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 September 2023
Revised: 24 November 2023
Accepted: 27 November 2023
Published: 22 December 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22001034) and Jiangxi Provincial Natural Science Foundation (No. 20212BAB213001).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return