Journal Home > Volume 3 , Issue 1

The application of polyoxometalate (POM) as building blocks to construct chiral POM-based functionalized frameworks remains a long-standing challenge. In this study, we report a chiral assembly by blending inorganic POMs and organic cyclodextrin (α-CD) molecules on the basis of coordination interactions. {SiW12} anions connect with Mn ions (Mn2+) antiparallel to form a unique all-inorganic layer with significant voids. The similar α-CD layered structure fills the voids of the POM–Mn layers, which are interwoven to form an organic–inorganic hybrid, which is extended by Na+ ions to produce a three-dimensional framework. The stability, chiral separation, chiral catalysis, and proton conductivity of this composite framework are explored.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chiral polyoxometalate–cyclodextrin frameworks via Mn-mediated assembly: Enhanced stability and catalytic activity

Show Author's information Xiu-Xia Ding,§Yun-Yue Yuan,§Ya-Ge ZhangZhan-Guo Jiang ( )Cai-Hong Zhan ( )
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China

§ Xiu-Xia Ding and Yun-Yue Yuan contributed equally to this work.

Abstract

The application of polyoxometalate (POM) as building blocks to construct chiral POM-based functionalized frameworks remains a long-standing challenge. In this study, we report a chiral assembly by blending inorganic POMs and organic cyclodextrin (α-CD) molecules on the basis of coordination interactions. {SiW12} anions connect with Mn ions (Mn2+) antiparallel to form a unique all-inorganic layer with significant voids. The similar α-CD layered structure fills the voids of the POM–Mn layers, which are interwoven to form an organic–inorganic hybrid, which is extended by Na+ ions to produce a three-dimensional framework. The stability, chiral separation, chiral catalysis, and proton conductivity of this composite framework are explored.

Keywords: catalysis, chirality, cyclodextrin, polyoxometalate

References(51)

[1]

Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358.

[2]

Wang, M. Y.; Yuan, Y. Y.; Qi, Z. Q.; Chen, J. Y.; Jiang, Z. G.; Zhan, C. H. Two Pseudo- T polyoxometalate-organic cages with the Td-Keggin template. Chem. Mater. 2022, 34, 10501–10508.

[3]

Rüther, T.; Hultgren, V. M.; Timko, B. P.; Bond, A. M.; Jackson, W. R.; Wedd, A. G. Electrochemical investigation of photooxidation processes promoted by sulfo-polyoxometalates: Coupling of photochemical and electrochemical processes into an effective catalytic cycle. J. Am. Chem. Soc. 2003, 125, 10133–10143.

[4]

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

[5]

Cheng, D. M.; Gao, Z. X.; Wang, W. W.; Li, S. Q.; Li, B.; Zang, H. Y. Zwitterion-dissociated polyoxometalate electrolytes for solid-state supercapacitors. Polyoxometalates 2023, 2, 9140019.

[6]

An, Y.; Wang, L. L.; Jiang, W. Y.; Lv, X. L.; Yuan, G. Q.; Hang, X. X.; Pang, H. Metal-organic framework-based materials for photocatalytic overall water splitting: Status and prospects. Polyoxometalates 2023, 2, 9140030.

[7]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[8]

Ren, X. Y.; Chen, B. K.; Zhang, G.; Bi, Y. F.; Dai, L. L.; Yang, G. P. Making one VIV substitution for Mo on classical [MoV2O4]2+ group: The first heterobimetallic Mo-V subunit in polyoxomolybdate-bisphosphonate family. Inorg. Chem. Front. 2023, 10, 5782–5788.

[9]

Wang, Y. X.; Lu, Y.; Zhang, W. S.; Dang, T. Y.; Yang, Y. L.; Bai, X.; Liu, S. X. Construction of hydrogel composites with superior proton conduction and flexibility using a new POM-based inorganic-organic hybrid. Polyoxometalates 2022, 1, 9140005.

[10]

Wei, Y. G. Polyoxometalates: An interdisciplinary journal focused on all aspects of polyoxometalates. Polyoxometalates 2022, 1, 9140014.

[11]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[12]

Zhang, S. S.; Liu, R. J.; Streb, C.; Zhang, G. J. Design and synthesis of novel polyoxometalate-based binary and ternary nanohybrids for energy conversion and storage. Polyoxometalates 2023, 2, 9140037.

[13]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[14]

Shen, Q. B.; Chen, J. L.; Jing, X.; Duan, C. Y. Polyoxometalate-embedded metal-organic framework as an efficient copper-based monooxygenase for C(sp3)-H bond oxidation via multiphoton excitation. ACS Catal. 2023, 13, 9969–9978.

[15]

Xue, R.; Guo, H.; Yang, W.; Huang, S. L.; Yang, G. Y. Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): Application of COFs-MOFs hybrids. Adv. Compos. Hybrid. Mater. 2022, 5, 1595–1611.

[16]

Zeng, H. M.; Jiang, Z. G.; Zhang, H. W.; Mao, W. T.; Gao, X. H.; Zhan, C. H. An extraordinary OER electrocatalyst based on the Co-Mo synergistic 2D pure inorganic porous framework. Eur. J. Inorg. Chem. 2021, 2021, 2606–2610.

[17]

Chen, W. Z.; Yi, X. F.; Zhang, J.; Zhang, L. Heterometallic Mo-Ti Oxo clusters with metal-metal bonds: Preparation and visible-light absorption behaviors. Polyoxometalates 2023, 2, 9140013.

[18]

Guan, Y.; Xiao, H. P.; Li, X. X.; Zheng, S. T. Recent advances on the synthesis, structure, and properties of polyoxotantalates. Polyoxometalates 2023, 2, 9140023.

[19]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[20]

Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[21]

Zhang, Y.; Liu, J.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem 2019, 1, 100021.

[22]

Inman, C.; Knaust, J. M.; Keller, S. W. A polyoxometallate-templated coordination polymer: Synthesis and crystal structure of [Cu3(4,4'-bipy)5(MECN)2]PW12O40·2C6H5CN. Chem. Commun. 2002, 156–157.

[23]

Vila-Nadàl, L.; Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat. Rev. Mater. 2017, 2, 17054.

[24]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[25]

Wang, Y.; Zeng, H. M.; Mao, W. T.; Wang, X. J.; Jiang, Z. G.; Zhan, C. H.; Feng, Y. L. The synthesis and photoluminescence of three porous metal-organic frameworks. Inorg. Chem. Commun. 2021, 129, 108613.

[26]

Huang, J. J.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Sha, M.; Wu, Z. C.; Gu, W. L.; Hu, L. Y.; Zhu, C. Z. Amorphous metal-organic frameworks on PtCu hydrogels: Enzyme immobilization platform with boosted activity and stability for sensitive biosensing. J. Hazard. Mater. 2022, 432, 128707.

[27]

Hu, M.; Wang, Y.; Yang, J. F.; Sun, Y. N.; Xing, G. X.; Deng, R. G.; Hu, X. F.; Zhang, G. P. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt. Biosens. Bioelectron. 2019, 142, 111554.

[28]

Sun, Y.; Jiang, X.; Jin, H.; Gui, R. Ketjen black/ferrocene dual-Doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Anal. Chim. Acta. 2019, 1083, 101–109.

[29]

Cook, T. R.; Zheng, Y. R.; Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777.

[30]

Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

[31]

Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846–850.

[32]

Luo, G. G.; Pan, Z. H.; Han, B. L.; Dong, G. L.; Deng, C. L.; Azam, M.; Tao, Y. W.; He, J.; Sun, C. F.; Sun, D. Total structure, electronic structure and catalytic hydrogenation activity of metal-deficient chiral polyhydride Cu57 nanoclusters. Angew. Chem., Int. Ed. 2023, 62, e202306849.

[33]

Jia, T.; Guan, Z. J.; Zhang, C. K.; Zhu, X. Z.; Chen, Y. X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-electron superatomic Cu31 nanocluster with chiral kernel and Nir-II emission. J. Am. Chem. Soc. 2023, 145, 10355–10363.

[34]

Yan, L. K.; López, X.; Carbó, J. J.; Sniatynsky, R.; Duncan, D. C.; Poblet, J. M. On the origin of alternating bond distortions and the emergence of chirality in polyoxometalate anions. J. Am. Chem. Soc. 2008, 130, 8223–8233.

[35]

Kortz, U.; Matta, S. Novel, Trimeric Mn-substituted undecatungstosilicate, [(β2-SiW11MnO38OH)3]15−. Inorg. Chem. 2001, 40, 815–817.

[36]

Leclerc-Laronze, N.; Marrot, J.; Hervé, G.; Thouvenot, R.; Cadot, E. The heteropolytungstate core {BW13O46}11− derived as monomer, dimer, and trimer. Chemistry 2007, 13, 7234–7245.

[37]

Jiang, Z. G.; Wu, X.; Xu, Z. X.; Zhan, C. H.; Zhang, J. Synthesis and photocatalytic activities of two homochiral metal-organic frameworks with cages and hydrogen bonding helices. CrystEngComm 2020, 22, 4206–4209.

[38]

Xiao, F. P.; Hao, J.; Zhang, J.; Lv, C. L.; Yin, P. C.; Wang, L. S.; Wei, Y. G. Polyoxometalatocyclophanes: Controlled assembly of polyoxometalate-based chiral metallamacrocycles from achiral building blocks. J. Am. Chem. Soc. 2010, 132, 5956–5957.

[39]

Qi, Z. Q.; Wang, M. Y.; Shen, J. C.; Lan, Y. Z.; Jiang, Z. G.; Zhan, C. H. Supramolecular hybrids of chiral waugh polyoxometalate with cyclodextrins. Chem. Commun. 2022, 58, 13616–13619.

[40]

Jiang, Z. G.; Mao, W. T.; Huang, D. P.; Wang, Y.; Wang, X. J.; Zhan, C. H. A nonconventional host-guest cubic assembly based on γ-cyclodextrin and a Keggin-type polyoxometalate. Nanoscale 2020, 12, 10166–10171.

[41]

Patel, H. A.; Islamoglu, T.; Liu, Z. C.; Nalluri,S. K. M.; Samanta, A.; Anamimoghadam, O.; Malliakas, C. D.; Farha, O. K.; Stoddart, J. F. Noninvasive substitution of K+ sites in cyclodextrin metal-organic frameworks by Li+ ions. J. Am. Chem. Soc. 2017, 139, 11020–11023.

[42]

Roy, I.; Stoddart, J. F. Cyclodextrin metal-organic frameworks and their applications. Acc. Chem. Res. 2021, 54, 1440–1453.

[43]

Forgan, R. S.; Smaldone, R. A.; Gassensmith, J. J.; Furukawa, H.; Cordes, D. B.; Li, Q. W.; Wilmer, C. E.; Botros, Y. Y.; Snurr, R. Q.; Slawin, A. M. Z. et al. Nanoporous carbohydrate metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 406–417.

[44]

Moussawi, M. A.; Leclerc-Laronze, N.; Floquet, S.; Abramov, P. A.; Sokolov, M. N.; Cordier, S.; Ponchel, A.; Monflier, E.; Bricout, H.; Landy, D. et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: From primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 2017, 139, 12793–12803.

[45]

Yang, P.; Zhao, W. L.; Shkurenko, A.; Belmabkhout, Y.; Eddaoudi, M.; Dong, X. C.; Alshareef, H. N.; Khashab, N. M. Polyoxometalate-cyclodextrin metal-organic frameworks: From tunable structure to customized storage functionality. J. Am. Chem. Soc. 2019, 141, 1847–1851.

[46]

Guan, W. M.; Wang, G. X.; Li, B.; Wu, L. X. Organic macrocycle-polyoxometalate hybrids. Coord. Chem. Rev. 2023, 481, 215039.

[47]

Li, B.; Wu, L. X. Perspective of polyoxometalate complexes on flexible assembly and integrated potentials. Polyoxometalates 2023, 2, 9140016.

[48]

Prochowicz, D.; Kornowicz, A.; Lewiński, J. Interactions of native cyclodextrins with metal ions and inorganic nanoparticles: Fertile landscape for chemistry and materials science. Chem. Rev. 2017, 117, 13461–13501.

[49]

Han, Q. X.; He, C.; Zhao, M.; Qi, B.; Niu, J. Y.; Duan, C. Y. Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 2013, 135, 10186–10189.

[50]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[51]

Hu, G. C.; Chang, W.; An, S.; Qi, B.; Song, Y. F. Self-assembly of reverse micelle nanoreactors by zwitterionic polyoxometalate-based surfactants for high selective production of β-hydroxyl peroxides. Chin. Chem. Lett. 2022, 33, 3968–3972.

File
0046_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 August 2023
Revised: 04 November 2023
Accepted: 22 November 2023
Published: 18 December 2023
Issue date: March 2024

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We thank the support of this work by the National Natural Science Foundation of China (No. 21801226), Natural Science Foundation of Zhejiang Province (Nos. LY20B010002 and LQ22B010002), and Zhejiang Normal University Fund.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return