Journal Home > Volume 2 , Issue 4

Studies on the preparation, structures, and properties of heterometallic complexes are currently of great interest because of their emergent synergistic properties. Although both rare earth and aluminum oxo clusters have been developed, only a few heterometallic compounds combine the two clusters. In this study, using “ligand-controlled partial hydrolysis”, we synthesize three hat-shaped cationic Al9Ln7 (Ln = Ce, Pr, Nd) clusters comprising tetrameric cubane units. Their unique vertex-to-edge-sharing arrangements have not been reported in either rare earth or aluminum oxo clusters. Apart from single-crystal X-ray diffraction, these compounds were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, and energy dispersive spectroscopy. Al9Ln7 clusters could serve as efficient catalysts for aldol condensation reactions between acetone and p-nitrobenzaldehyde under mild conditions, with an excellent yield of 86% by AlOC-129Ce.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tetrameric cubane Al9Ln7 (Ln = Ce, Pr, Nd) clusters as aldol addition catalysts

Show Author's information Xiao-Yu Liu1,2,§Yinghua Yu2,§Yi-Fan Sun2Wei-Hui Fang2 ( )Jian Zhang2
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

§ Xiao-Yu Liu and Yinghua Yu contributed equally to this work.

Abstract

Studies on the preparation, structures, and properties of heterometallic complexes are currently of great interest because of their emergent synergistic properties. Although both rare earth and aluminum oxo clusters have been developed, only a few heterometallic compounds combine the two clusters. In this study, using “ligand-controlled partial hydrolysis”, we synthesize three hat-shaped cationic Al9Ln7 (Ln = Ce, Pr, Nd) clusters comprising tetrameric cubane units. Their unique vertex-to-edge-sharing arrangements have not been reported in either rare earth or aluminum oxo clusters. Apart from single-crystal X-ray diffraction, these compounds were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, and energy dispersive spectroscopy. Al9Ln7 clusters could serve as efficient catalysts for aldol condensation reactions between acetone and p-nitrobenzaldehyde under mild conditions, with an excellent yield of 86% by AlOC-129Ce.

Keywords: aluminum, clusters, heterometallic, cubane, aldol addition

References(47)

[1]

Huang, Y. G.; Jiang, F. L.; Hong, M. C. Magnetic lanthanide-transition-metal organic-inorganic hybrid materials: From discrete clusters to extended frameworks. Coord. Chem. Rev. 2009, 253, 2814–2834.

[2]

Teo, B. K. A perspective on the science of clusters. J. Cluster Sci. 2014, 25, 5–28.

[3]

Zheng, A. P.; Gao, M. Y.; Fang, W. H.; Kang, Y. Two novel {Ti6P2} clusters decorated with inorganic acids. Chin. J. Struct. Chem. 2021, 40, 277–282.

[4]

Luo, X. F.; He, J.; Wang, Y.; Dai, H.; Wu, Z. G. Research advances in helicene structure-based chiral luminescent materials and their circularly polarized electroluminescence. J. Struct. Chem. 2022, 41, 2212070–2212079.

[5]

Zheng, Z. P. Ligand-controlled self-assembly of polynuclear lanthanide-oxo/hydroxo complexes: From synthetic serendipity to rational supramolecular design. Chem. Commun. 2001, 2521–2529.

[6]

Wagner, A. T.; Roesky, P. W. Rare-earth metal oxo/hydroxo clusters-synthesis, structures, and applications. Eur. J. Inorg. Chem. 2016, 2016, 782–791.

[7]

Zhang, L.; Fan, X.; Yi, X. F.; Lin, X.; Zhang, J. Coordination-delayed-hydrolysis method for the synthesis and structural modulation of titanium-oxo clusters. Acc. Chem. Res. 2022, 55, 3150–3161.

[8]

Bosch, M.; Yuan, S.; Rutledge, W.; Zhou, H. C. Stepwise synthesis of metal-organic frameworks. Acc. Chem. Res. 2017, 50, 857–865.

[9]

Evans, J. D.; Sumby, C. J.; Doonan, C. J. Post-synthetic metalation of metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5933–5951.

[10]

He, H.; Cao, G. J.; Zheng, S. T.; Yang, G. Y. Lanthanide germanate cluster organic frameworks constructed from {Ln8Ge12} or {Ln11Ge12} cage cluster building blocks. J. Am. Chem. Soc. 2009, 131, 15588–15589.

[11]

Chen, R. Y.; He, Y. P.; Zhang, J. Combining Ti4(embonate)6 cages and [Pb4(OH)4]4+ clusters for enhanced third-order nonlinear optical property. Polyoxometalates 2022, 1, 9140002.

[12]

Kong, X. J.; Long, L. S.; Zheng, Z. P.; Huang, R. B.; Zheng, L. S. Keeping the ball rolling: Fullerene-like molecular clusters. Acc. Chem. Res. 2010, 43, 201–209.

[13]

Zheng, H.; Du, M. H.; Lin, S. C.; Tang, Z. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew. Chem., Int. Ed. 2018, 57, 10976–10979.

[14]

Chen, W. P.; Zhou, G. J.; Gou, Z. L.; Wang, S.; Zhai, Y. Q.; Han, T.; Schnack, J.; Zheng, Y. Z. Hendecanuclear [Cu6Gd5] magnetic cooler with high molecular symmetry of D3h. Chin. Chem. Lett. 2021, 32, 838–841.

[15]

Chen, W. P.; Liao, P. Q.; Yu, Y. Z.; Zheng, Z. P.; Chen, X. M.; Zheng, Y. Z. A mixed-ligand approach for a gigantic and hollow heterometallic cage {Ni64RE96} for gas separation and magnetic cooling applications. Angew. Chem., Int. Ed. 2016, 55, 9375–9379.

[16]

Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731–17735.

[17]

Zhao, J. B.; Li, Q.; Zhuang, S. L.; Song, Y. B.; Morris, D. J.; Zhou, M.; Wu, Z. K.; Zhang, P.; Jin, R. C. Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J. Phys. Chem. Lett. 2018, 9, 7173–7179.

[18]

Wang, J. Q.; He, R. L.; Liu, W. D.; Feng, Q. Y.; Zhang, Y. E.; Liu, C. Y.; Ge, J. X.; Wang, Q. M. Integration of metal catalysis and organocatalysis in a metal nanocluster with anchored proline. J. Am. Chem. Soc. 2023, 145, 12255–12263.

[19]

Arnold, K.; Batsanov, A. S.; Davies, B.; Grosjean, C.; Schütz, T.; Whiting, A.; Zawatzky, K. The first example of enamine-Lewis acid cooperative bifunctional catalysis: Application to the asymmetric aldol reaction. Chem. Commun. 2008, 3879–3881.

[20]

Ramachary, D. B.; Barbas III, C. F. Towards organo-click chemistry: Development of organocatalytic multicomponent reactions through combinations of aldol, wittig, knoevenagel, michael, diels-alder and huisgen cycloaddition reactions. Chem.—Eur. J. 2004, 10, 5323–5331.

[21]

Watanabe, K. I.; Yamada, Y.; Goto, K. New type of aldol condensations catalyzed by metal(II) complexes of α-amino acid esters and that with cyclodextrin system. Bull. Chem. Soc. Japan 1985, 58, 1401–1406.

[22]

Reddy, K. R.; Rajgopal, K.; Maheswari, C. U.; Kantam, M. L. Chitosan hydrogel: A green and recyclable biopolymercatalyst for aldol and Knoevenagel reactions. New J. Chem. 2006, 30, 1549–1552.

[23]

Wang, R. Y.; Liu, H.; Carducci, M. D.; Jin, T. Z.; Zheng, C.; Zheng, Z. P. Lanthanide coordination with α-amino acids under near physiological pH conditions: Polymetallic complexes containing the cubane-like [Ln43-OH)4]8+ cluster core. Inorg. Chem. 2001, 40, 2743–2750.

[24]

Wang, R. Y.; Zheng, Z. P.; Jin, T. Z.; Staples, R. J. Coordination chemistry of lanthanides at "high" pH: Synthesis and structure of the pentadecanuclear complex of europium(III) with tyrosine. 3.0.CO;2-3">Angew. Chem., Int. Ed. 1999, 38, 1813–1815.

[25]

Wang, R. Y.; Selby, H. D.; Liu, H.; Carducci, M. D.; Jin, T. Z.; Zheng, Z. P.; Anthis, J. W.; Staples, R. J. Halide-templated assembly of polynuclear lanthanide-hydroxo complexes. Inorg. Chem. 2002, 41, 278–286.

[26]

Ashtree, J. M.; Borilović, I.; Vignesh, K. R.; Swain, A.; Hamilton, S. H.; Whyatt, Y. L.; Benjamin, S. L.; Phonsri, W.; Forsyth, C. M.; Wernsdorfer, W. et al. Tuning the ferrotoroidic coupling and magnetic hysteresis in double-triangle complexes {Dy3MIIIDy3} via the MIII-linker. Eur. J. Inorg. Chem. 2021, 2021, 435–444.

[27]

Willauer, A. R.; Fadaei-Tirani, F.; Zivkovic, I.; Sienkiewicz, A.; Mazzanti, M. Structure and reactivity of polynuclear divalent lanthanide disiloxanediolate complexes. Inorg. Chem. 2022, 61, 7436–7447.

[28]

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

[29]

Sun, Y. F.; Liu, Y. J.; Wang, S. T.; Liu, X. Y.; Ma, C.; Fang, W. H.; Zhang, J. Loading single lanthanide ion into aluminum molecular rings: Water-stable sodalite cage for removal of nuclear-industry anions. Sci. China Chem. 2023, 66, 1384–1393.

[30]

Miao, Y. L.; Liu, J. L.; Li, J. Y.; Leng, J. D.; Ou, Y. C.; Tong, M. L. Two novel Dy8 and Dy11 clusters with cubane [Dy43-OH)4]8+ units exhibiting slow magnetic relaxation behaviour. Dalton Trans. 2011, 40, 10229–10236.

[31]

Chen, L.; Guo, J. Y.; Xu, X.; Ju, W. W.; Zhang, D.; Zhu, D. R.; Xu, Y. A novel 2-D coordination polymer constructed from high-nuclearity waist drum-like pure Ho48 clusters. Chem. Commun. 2013, 49, 9728–9730.

[32]

Ren, Y. X.; Zheng, X. J.; Li, L. C.; Yuan, D. Q.; An, M.; Jin, L. P. Three-dimensional frameworks based on dodecanuclear Dy-hydroxo wheel cluster with slow relaxation of magnetization. Inorg. Chem. 2014, 53, 12234–12236.

[33]

Sun, P. F.; Zhang, X. N.; Fan, C. H.; Chen, W. P.; Zheng, Y. Z. Tricine-supported polyoxo(alkoxo)lanthanide cluster {Ln15} (Ln = Eu, Gd, Tb) with magnetic refrigerant and fluorescent properties. Polyoxometalates 2023, 2, 9140026.

[34]

Kong, X. J.; Wu, Y. L.; Long, L. S.; Zheng, L. S.; Zheng, Z. P. A chiral 60-metal sodalite cage featuring 24 vertex-sharing [Er43-OH)4] cubanes. J. Am. Chem. Soc. 2009, 131, 6918–6919.

[35]

Zheng, X. Y.; Jiang, Y. H.; Zhuang, G. L.; Liu, D. P.; Liao, H. G.; Kong, X. J.; Long, L. S.; Zheng, L. S. A gigantic molecular wheel of {Gd140}: A new member of the molecular wheel family. J. Am. Chem. Soc. 2017, 139, 18178–18181.

[36]

Chen, W. P.; Liao, P. Q.; Jin, P. B.; Zhang, L.; Ling, B. K.; Wang, S. C.; Chan, Y. T.; Chen, X. M.; Zheng, Y. Z. The gigantic {Ni36Gd102} hexagon: A sulfate-templated "Star-of-David" for photocatalytic CO2 reduction and magnetic cooling. J. Am. Chem. Soc. 2020, 142, 4663–4670.

[37]

Peng, J. B.; Zhang, Q. C.; Kong, X. J.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S.; Zheng, Z. P. A 48-metal cluster exhibiting a large magnetocaloric effect. Angew. Chem., Int. Ed. 2011, 50, 10649–10652.

[38]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[39]

Nachtigall, O.; Hirsch, T.; Spandl, J. Alcoholysis of Al2(O tBu)6-synthesis and crystal structure of Al9O3(OEt)21. Z. Anorg. Allg. Chem. 2018, 644, 2–5.

[40]

Liu, Y. J.; Yu, Y. H.; Sun, Y. F.; Fang, W. H.; Zhang, J. Designable assembly of atomically precise Al4O4 cubane supported mesoporous heterometallic architectures. Chem. Sci. 2022, 13, 5693–5700.

[41]

Liu, Y. J.; Cui, L. M.; Fang, W. H.; Zhang, J. Design and synthesis of Al7Ni2 heterometallic clusters based on metal substitution and ligands protection strategies. Chin. J. Chem. 2023, 41, 521–526.

[42]

Nguyen, K. D.; Kutzscher, C.; Ehrling, S.; Senkovska, I.; Bon, V.; de Oliveira, M.; Gutmann, T.; Buntkowsky, G.; Kaskel, S. Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. J. Catal. 2019, 377, 41–50.

[43]

Tamang, S. R.; Singh, A.; Bedi, D.; Bazkiaei, A. R.; Warner, A. A.; Glogau, K.; McDonald, C.; Unruh, D. K.; Findlater, M. Polynuclear lanthanide-diketonato clusters for the catalytic hydroboration of carboxamides and esters. Nat. Catal. 2020, 3, 154–162.

[44]

Wei, N.; Zhang, Y.; Liu, L.; Han, Z. B.; Yuan, D. Q. Pentanuclear Yb(III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion. Appl. Catal. B 2017, 219, 603–610.

[45]

Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. J. Am. Chem. Soc. 2009, 131, 7524–7525.

[46]

Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron 2007, 63, 1923–1930.

[47]

Wang, H. M.; Bing, W. H.; Chen, C. Y.; Yang, Y. S.; Xu, M.; Chen, L. F.; Zheng, L.; Li, X. L.; Zhang, X.; Yin, J. J. et al. Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction. Chin. J. Catal. 2020, 41, 1279–1287.

File
0045_ESM1.pdf (6.2 MB)
0045_ESM2_checkcif.pdf (403.8 KB)
0045_ESM3_AlOC-129_20231024.cif (10.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 September 2023
Revised: 26 October 2023
Accepted: 21 November 2023
Published: 11 December 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22371278 and 92061104), Natural Science Foundation of Fujian Province (No. 2021J06035), and Youth Innovation Promotion Association CAS (No. Y2018081).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return