AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Open Access

Structural modification and performance regulation of atomically precise metal nanoclusters by phosphine

Wenwen Fei§Yang Tao§Yao QiaoSheng-Yan TangMan-Bo Li ( )
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

§ Wenwen Fei and Yang Tao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The ligand exchange-induced size/structural transformation (LEIST) reaction of metal nanoclusters gives researchers an effective way to understand the structural transition, broaden the methods of synthesis, and enhance the relevant performance of metal nanoclusters. Herein, the structural features and unique bonding modes of phosphine ligands are investigated to explore the phosphine-LEIST reaction, which shows an advantage in metal nanocluster’ structural modification and property modulation. This review focuses on the phosphine LEIST and the corresponding catalytic and optical performance regulation of metal nanoclusters. An introspective outlook is also presented concerning the design and synthesis of functional phosphine ligands for the further evolution in modulates and performance of atomically precise metal nanoclusters.

References

[1]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[2]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[3]

Kang, X.; Chong, H. B.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale 2018, 10, 10758–10834.

[4]

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

[5]

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

[6]

Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663.

[7]
Zhu, M. Z. Metal Nanocluster Chemistry: Ligand-Protected Metal Nanoclusters with Atomic Precision; Elsevier: Amsterdam, 2023.
[8]

Heinecke, C. L.; Ni, T. W.; Malola, S.; Mäkinen, V.; Wong, O. A.; Häkkinen, H.; Ackerson, C. J. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters. J. Am. Chem. Soc. 2012, 134, 13316–13322.

[9]

Higaki, T.; Liu, C.; Zeng, C. J.; Jin, R. X.; Chen, Y. X.; Rosi, N. L.; Jin, R. C. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy. Angew. Chem., Int. Ed. 2016, 55, 6694–6697.

[10]

Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.

[11]

Cirri, A.; Hernández, H. M.; Kmiotek, C.; Johnson, C. J. Systematically tuning the electronic structure of gold nanoclusters through ligand derivatization. Angew. Chem., Int. Ed. 2019, 58, 13818–13822.

[12]

Cowan, M. J.; Higaki, T.; Jin, R. C.; Mpourmpakis, G. Understanding the solubility behavior of atomically precise gold nanoclusters. J. Phys. Chem. C 2019, 123, 20006–20012.

[13]

Zhao, Y.; Zhuang, S. L.; Liao, L. W.; Wang, C. M.; Xia, N.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Wu, Z. K. A dual purpose strategy to endow gold nanoclusters with both catalysis activity and water solubility. J. Am. Chem. Soc. 2020, 142, 973–977.

[14]

Pensa, E.; Azofra, L. M.; Salvarezza, R. C.; Carro, P. Effect of ligands on the stability of gold nanoclusters. J. Phys. Chem. Lett. 2022, 13, 6475–6480.

[15]

Li, J. J.; Liu, Z. K.; Guan, Z. J.; Han, X. S.; Shi, W. Q.; Wang, Q. M. A 59-electron non-magic-number gold nanocluster Au99(C≡CR)40 showing unexpectedly high stability. J. Am. Chem. Soc. 2022, 144, 690–694.

[16]

Liu, L. R.; Yuan, J. Y.; Cheng, L. L.; Yang, J. L. New insights into the stability and structural evolution of some gold nanoclusters. Nanoscale 2017, 9, 856–861.

[17]

Pyo, K.; Matus, M. F.; Hulkko, E.; Myllyperkiö, P.; Malola, S.; Kumpulainen, T.; Häkkinen, H.; Pettersson, M. Atomistic view of the energy transfer in a fluorophore-functionalized gold nanocluster. J. Am. Chem. Soc. 2023, 145, 14697–14704.

[18]

Xiao, F.; Chen, Y.; Qi, J.; Yao, Q. F.; Xie, J. P.; Jiang, X. Y. Multi-targeted peptide-modified gold nanoclusters for treating solid tumors in the liver. Adv. Mater. 2023, 35, 2210412.

[19]

Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.

[20]

Xue, Q.; Wang, Z. P.; Han, S. J.; Liu, Y.; Dou, X. Y.; Li, Y.; Zhu, H. G.; Yuan, X. Ligand engineering of Au nanoclusters with multifunctional metalloporphyrins for photocatalytic H2O2 production. J. Mater. Chem. A 2022, 10, 8371–8377.

[21]

Zhao, J. T.; Ziarati, A.; Rosspeintner, A.; Wang, Y. N.; Bürgi, T. Engineering ligand chemistry on Au25 nanoclusters: From unique ligand addition to precisely controllable ligand exchange. Chem. Sci. 2023, 14, 7665–7674.

[22]

Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Atomic-level doping of metal clusters. Acc. Chem. Res. 2018, 51, 3094–3103.

[23]

Fei, W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, M.; Rissanen, K.; Venzo, A.; Maran, F. Metal doping of Au25(SR)18 clusters: Insights and hindsights. J. Am. Chem. Soc. 2019, 141, 16033–16045.

[24]

Qian, H. F.; Zhu, Y.; Jin, R. C. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795–3803.

[25]

Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.

[26]

He, G.; Huang, P.; Chen, X. Y. Theranostic multimodal gold nanoclusters. Nat. Biomed. Eng. 2020, 4, 668–669.

[27]

Takano, S.; Hasegawa, S.; Suyama, M.; Tsukuda, T. Hydride doping of chemically modified gold-based superatoms. Acc. Chem. Res. 2018, 51, 3074–3083.

[28]

Kang, X.; Zhu, M. Z. Transformation of atomically precise nanoclusters by ligand-exchange. Chem. Mater. 2019, 31, 9939–9969.

[29]

Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114–13118.

[30]

Smith, A. M.; Nie, S. M. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc. 2011, 133, 24–26.

[31]

Zhen, Y. R.; Jin, S.; Kang, X.; Xu, C.; Fang, C.; Hu, D. Q.; Zhu, M. Z. [Pt1Ag37(SAdm)21(Dppp)3Cl6]2+: Intercluster transformation and photochemical properties. Inorg. Chem. Front. 2022, 9, 3907–3914.

[32]

Li, Q.; Taylor, M. G.; Kirschbaum, K.; Lambright, K. J.; Zhu, X. F.; Mpourmpakis, G.; Jin, R. C. Site-selective substitution of gold atoms in the Au24(SR)20 nanocluster by silver. J. Colloid Interface Sci. 2017, 505, 1202–1207.

[33]

Zou, X. J.; Kang, X.; Zhu, M. Z. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem. Soc. Rev. 2023, 52, 5892–5967.

[34]

Wang, Y. N.; Bürgi, T. Evidence for stereoelectronic effects in ligand exchange reactions on Au25 nanoclusters. Nanoscale 2022, 14, 2456–2464.

[35]

Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Chen, T.; Wang, S. X.; Yu, H. Z.; Li, X. W.; Zhu, M. Z. In situ two-phase ligand exchange: A new method for the synthesis of alloy nanoclusters with precise atomic structures. J. Am. Chem. Soc. 2017, 139, 5668–5671.

[36]

Suzuki, W.; Takahata, R.; Chiga, Y.; Kikkawa, S.; Yamazoe, S.; Mizuhata, Y.; Tokitoh, N.; Teranishi, T. Control over ligand-exchange positions of thiolate-protected gold nanoclusters using steric repulsion of protecting ligands. J. Am. Chem. Soc. 2022, 144, 12310–12320.

[37]

Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J. Am. Chem. Soc. 2005, 127, 13464–13465.

[38]

Qian, H. F.; Zhu, M. Z.; Lanni, E.; Zhu, Y.; Bier, M. E.; Jin, R. C. Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J. Phys. Chem. C 2009, 113, 17599–17603.

[39]

Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z. T.; Yao, Q. F.; Chatt, A.; Xie, J. P.; Jin, R. C.; Akola, J. et al. Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.

[40]

Das, A.; Li, T.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Nonsuperatomic [Au23(SC6H11)16] nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 2013, 135, 18264–18267.

[41]

Das, A.; Li, T.; Li, G.; Nobusada, K.; Zeng, C. J.; Rosi, N. L.; Jin, R. C. Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster. Nanoscale 2014, 6, 6458–6462.

[42]

Yao, C. H.; Tian, S. B.; Liao, L. W.; Liu, X. F.; Xia, N.; Yan, N.; Gan, Z. B.; Wu, Z. K. Synthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method. Nanoscale 2015, 7, 16200–16203.

[43]

Albano, V. G.; Bellon, P. L.; Manassero, M.; Sansoni, M. Intermetallic pattern in metal-atom clusters. Structural studies on Au11X3(PR3)7 species. J. Chem. Soc. D: Chem. Commun 1970, 1210–1211.

[44]

Teo, B. K. Cluster of clusters: A new series of high nuclearity Au-Ag clusters. Polyhedron 1988, 7, 2317–2320.

[45]

Teo, B. K.; Hong, M.; Zhang, H.; Huang, D.; Shi, X. Cluster of clusters: Structure of a novel 38-atom cluster ( p-tolyl3P)12Au18Ag20Cl14. J. Chem. Soc. Chem. Commun 1988, 204–206.

[46]

McPartlin, M.; Mason, R.; Malatesta, L. Novel cluster complexes of gold(0)-gold(I). J. Chem. Soc. D: Chem. Commun 1969, 334.

[47]

Mingos, D. M. P. Molecular-orbital calculations on cluster compounds of gold. J. Chem. Soc. Dalton Trans 1976, 1163–1169.

[48]

Zhang, L. L.; Guo, M. D.; Zhou, J.; Fang, C.; Sun, X. Y. Benchmark models for elucidating ligand effects: Thiols ligated isostructural Cu6 nanoclusters. Small 2023, 19, 2301633.

[49]

Huang, L. T.; Lun, Y.; Liu, Y. P.; Chen, L. M.; Li, B. W.; Song, S. Q.; Wang, Y. Controllably partial removal of thiolate ligands from unsupported Au25 nanoclusters by rapid thermal treatments for electrochemical CO2 reduction. J. Energy Chem. 2023, 86, 16–22.

[50]

Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

[51]

Konishi, K.; Iwasaki, M.; Shichibu, Y. Phosphine-ligated gold clusters with core+ exo geometries: Unique properties and interactions at the ligand-cluster interface. Acc. Chem. Res. 2018, 51, 3125–3133.

[52]

Zhang, Q. F.; Chen, X. N.; Wang, L. S. Toward solution syntheses of the tetrahedral Au20 pyramid and atomically precise gold nanoclusters with uncoordinated sites. Acc. Chem. Res. 2018, 51, 2159–2168.

[53]

Häkkinen, H. Atomic and electronic structure of gold clusters: Understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 2008, 37, 1847–1859.

[54]

Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

[55]

Longo, A.; de Boed, E. J. J.; Mammen, N.; van der Linden, M.; Honkala, K.; Häkkinen, H.; de Jongh, P. E.; Donoeva, B. Towards atomically precise supported catalysts from monolayer-protected clusters: The critical role of the support. Chem.—Eur. J. 2020, 26, 7051–7058.

[56]

López-Estrada, O.; Selenius, E.; Zuniga-Gutierrez, B.; Malola, S.; Häkkinen, H. Cubic aromaticity in ligand-stabilized doped Au superatoms. J. Chem. Phys. 2021, 154, 204303.

[57]

Tao, C. B.; Fan, J. Q.; Fei, W. W.; Zhao, Y.; Li, M. B. Structure and assembly of a hexanuclear AuNi bimetallic nanocluster. Nanoscale 2023, 15, 109–113.

[58]

Li, M. B.; Tian, S. K.; Wu, Z. K.; Jin, R. C. Peeling the core-shell Au25 nanocluster by reverse ligand-exchange. Chem. Mater. 2016, 28, 1022–1025.

[59]

He, Z. B.; Yang, Y. F.; Zou, J.; You, Q.; Feng, L.; Li, M. B.; Wu, Z. K. Partial phosphorization: A strategy to improve some performance(s) of thiolated metal nanoclusters without notable reduction of stability. Chem.—Eur. J. 2022, 28, e202200212.

[60]

Liu, C.; Zhao, Y.; Zhang, T. S.; Tao, C. B.; Fei, W. W.; Zhang, S.; Li, M. B. Asymmetric transformation of achiral gold nanoclusters with negative nonlinear dependence between chiroptical activity and enantiomeric excess. Nat. Commun. 2023, 14, 3730.

[61]

Zhu, Z. M.; Zhao, Y.; Zhao, H. L.; Liu, C.; Zhang, Y.; Fei, W. W.; Bi, H.; Li, M. B. Photochemical route for synthesizing atomically precise metal nanoclusters from disulfide. Nano Lett. 2023, 23, 7508–7515.

[62]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[63]

Xu, Q.; Wang, S. X.; Liu, Z.; Xu, G. Y.; Meng, X. M.; Zhu, M. Z. Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale 2013, 5, 1176–1182.

[64]

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-Heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

[65]

Van der Velden, J. W. A.; Bour, J. J.; Steggerda, J. J.; Beurskens, P. T.; Roseboom, M.; Noordik, J. H. Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: Preparation, X-ray analysis, and gold-197 Moessbauer and phosphorus-31{proton} NMR spectra. Inorg. Chem. 1982, 21, 4321–4324.

[66]

Kamei, Y.; Shichibu, Y.; Konishi, K. Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: Octanuclear clusters with edge-sharing gold tetrahedron motifs. Angew. Chem., Int. Ed. 2011, 50, 7442–7445.

[67]

Wu, Z. K.; Jin, R. C. Stability of the two Au-S binding modes in Au25(SG)18 nanoclusters probed by NMR and optical spectroscopy. ACS Nano 2009, 3, 2036–2042.

[68]

Lei, Z.; Li, J. J.; Nan, Z. A.; Jiang, Z. G.; Wang, Q. M. Cluster from cluster: A quantitative approach to magic gold nanoclusters [Au25(SR)18]. Angew. Chem., Int. Ed. 2021, 60, 14415–14419.

[69]

Jin, S.; Du, W. J.; Wang, S. X.; Kang, X.; Chen, M.; Hu, D. Q.; Chen, S.; Zou, X. J.; Sun, G. D.; Zhu, M. Z. Thiol-induced synthesis of phosphine-protected gold nanoclusters with atomic precision and controlling the structure by ligand/metal engineering. Inorg. Chem. 2017, 56, 11151–11159.

[70]

Li, Q. Z.; Yang, S.; Chai, J. S.; Zhang, H.; Zhu, M. Z. Insights into mechanisms of diphosphine-mediated controlled surface construction on Au nanoclusters. Nanoscale 2022, 14, 15804–15811.

[71]

Song, Y. B.; Abroshan, H.; Chai, J. S.; Kang, X.; Kim, H. J.; Zhu, M. Z.; Jin, R. C. Molecular-like transformation from PhSe-protected Au25 to Au23 nanocluster and its application. Chem. Mater. 2017, 29, 3055–3061.

[72]
Waszkielewicz, M.; Olesiak-Banska, J.; Comby-Zerbino, C.; Bertorelle, F.; Dagany, X.; Bansal, A. K.; Sajjad, M. T.; Samuel, I. D. W.; Sanader, Z.; Rozycka, M. et al. pH-induced transformation of ligated Au25 to brighter Au23 nanoclusters. Nanoscale 2018 , 10, 11335–11341.
DOI
[73]

Bertino, M. F.; Sun, Z. M.; Zhang, R.; Wang, L. S. Facile syntheses of monodisperse ultrasmall Au clusters. J. Phys. Chem. B 2006, 110, 21416–21418.

[74]

Pettibone, J. M.; Hudgens, J. W. Synthetic approach for tunable, size-selective formation of monodisperse, diphosphine-protected gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2536–2540.

[75]

Hudgens, J. W.; Pettibone, J. M.; Senftle, T. P.; Bratton, R. N. Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters. Inorg. Chem. 2011, 50, 10178–10189.

[76]

Tang, L.; Duan, T. F.; Pei, Y.; Wang, S. X. Synchronous metal rearrangement on two-dimensional equatorial surfaces of Au-Cu alloy nanoclusters. ACS Nano 2023, 17, 4279–4286.

[77]

Zhou, M.; Zeng, C. J.; Song, Y. B.; Padelford, J. W.; Wang, G. L.; Sfeir, M. Y.; Higaki, T.; Jin, R. C. On the non-metallicity of 2. 2 nm Au246(SR)80 nanoclusters. Angew. Chem., Int. Ed. 2017, 56, 16257–16261.

[78]

Sakthivel, N. A.; Theivendran, S.; Ganeshraj, V.; Oliver, A. G.; Dass, A. Crystal structure of faradaurate-279: Au279(SPh- tBu)84 plasmonic nanocrystal molecules. J. Am. Chem. Soc. 2017, 139, 15450–15459.

[79]

Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

[80]

Xu, G. T.; Wu, L. L.; Chang, X. Y.; Ang, T. W. H.; Wong, W. Y.; Huang, J. S.; Che, C. M. Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates between catenane and ring-in-ring structures. Angew. Chem., Int. Ed. 2019, 58, 16297–16306.

[81]

Li, Q. Z.; Huang, B. Y.; Yang, S.; Zhang, H.; Chai, J. S.; Pei, Y.; Zhu, M. Z. Unraveling the nucleation process from a Au(I)-SR complex to transition-size nanoclusters. J. Am. Chem. Soc. 2021, 143, 15224–15232.

[82]

Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 1997, 101, 3706–3712.

[83]

Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.

[84]

Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9964–9968.

[85]

Kang, X.; Zhou, M.; Wang, S. X.; Jin, S.; Sun, G. D.; Zhu, M. Z.; Jin, R. C. The tetrahedral structure and luminescence properties of Bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster. Chem. Sci. 2017, 8, 2581–2587.

[86]

Chiu, T. H.; Liao, J. H.; Wu, Y. Y.; Chen, J. Y.; Chen, Y. J.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride doping effects on the structure and properties of eight-electron Rh/Ag superatoms: The [RhH x @Ag21– x {S2P(O n Pr)2}12] ( x = 0–2) series. J. Am. Chem. Soc. 2023, 145, 16739–16747.

[87]

Liao, J. H.; Chiu, T. H.; Liang, H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Galvanic replacement-induced introduction of a heteroligand into bimetallic and trimetallic nanoclusters. Nanoscale 2023, 15, 6121–6125.

[88]

Li, Q.; Luo, T. Y.; Taylor, M. G.; Wang, S. X.; Zhu, X. F.; Song, Y. B.; Mpourmpakis, G.; Rosi, N. L.; Jin, R. C. Molecular “surgery” on a 23-gold-atom nanoparticle. Sci. Adv. 2017, 3, e1603193.

[89]

Zhuang, S. L.; Chen, D.; Ng, W. P.; Liu, L. J.; Sun, M. Y.; Liu, D. Y.; Nawaz, T.; Xia, Q.; Wu, X.; Huang, Y. L. et al. Phosphine-triggered structural defects in Au44 homologues boost electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202306696.

[90]

Li, M. B.; Tian, S. K.; Wu, Z. K. Improving the catalytic activity of Au25 nanocluster by peeling and doping. Chin. J. Chem. 2017, 35, 567–571.

[91]

Zou, J. F.; Fei, W. W.; Qiao, Y.; Yang, Y.; He, Z. B.; Feng, L.; Li, M. B.; Wu, Z. K. Combined synthesis of interconvertible Au11Cd and Au26Cd5 for photocatalytic oxidations involving singlet oxygen. Chin. Chem. Lett. 2023, 34, 107660.

[92]

Yang, Y.; Chen, C.; Xu, G. Y.; Yuan, J. Y.; Ye, S. F.; Chen, L.; Lv, Q. L.; Luo, G.; Yang, J. L.; Li, M. B. et al. An efficient nanocluster catalyst for Sonogashira reaction. J. Catal. 2021, 401, 206–213.

[93]

Kang, X.; Wang, S. X.; Zhu, M. Z. Observation of a new type of aggregation-induced emission in nanoclusters. Chem. Sci. 2018, 9, 3062–3068.

[94]

Sahoo, K.; Chakraborty, I. Ligand effects on the photoluminescence of atomically precise silver nanoclusters. Nanoscale 2023, 15, 3120–3129.

[95]

Niihori, Y.; Takahashi, N.; Mitsui, M. Photophysical and thermodynamic properties of Ag29(BDT)12(TPP) x ( x = 0–4) clusters in secondary ligand binding-dissociation equilibria unraveled by photoluminescence analysis. J. Phys. Chem. C 2020, 124, 5880–5886.

[96]

Gao, X. W.; Dong, S. T.; Fu, L.; Xu, Y. Q.; Jia, J. N.; Zou, G. Z. Surface-engineering enhanced charge injection and recombination of silver nanoclusters in an aqueous medium. J. Phys. Chem. C 2021, 125, 22078–22083.

[97]

Khatun, E.; Ghosh, A.; Chakraborty, P.; Singh, P.; Bodiuzzaman, M.; Ganesan, P.; Nataranjan, G.; Ghosh, J.; Pal, S. K.; Pradeep, T. A thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters. Nanoscale 2018, 10, 20033–20042.

[98]

Xu, C.; Yuan, Q. Q.; Wei, X.; Li, H.; Shen, H. L.; Kang, X.; Zhu, M. Z. Surface environment complication makes Ag29 nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chem. Sci. 2022, 13, 1382–1389.

[99]

Kang, X.; Wei, X.; Jin, S.; Yuan, Q. Q.; Luan, X. Q.; Pei, Y.; Wang, S. X.; Zhu, M. Z.; Jin, R. C. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci. USA 2019, 116, 18834–18840.

[100]

Kang, X.; Wei, X.; Wang, S. X.; Zhu, M. Z. Controlling the phosphine ligands of Pt1Ag28(S-Adm)18(PR3)4 nanoclusters. Inorg. Chem. 2020, 59, 8736–8743.

[101]

Zeng, Y.; Havenridge, S.; Gharib, M.; Baksi, A.; Weerawardene, K. L. D. M.; Ziefuß, A. R.; Strelow, C.; Rehbock, C.; Mews, A.; Barcikowski, S. et al. Impact of ligands on structural and optical properties of Ag29 nanoclusters. J. Am. Chem. Soc. 2021, 143, 9405–9414.

[102]

Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60) n ]3− ( n = 1–9). ACS Nano 2018, 12, 2415–2425.

[103]

Ishii, W.; Okayasu, Y.; Kobayashi, Y.; Tanaka, R.; Katao, S.; Nishikawa, Y.; Kawai, T.; Nakashima, T. Excited state engineering in Ag29 nanocluster through peripheral modification with silver(I) complexes for bright near-infrared photoluminescence. J. Am. Chem. Soc. 2023, 145, 11236–11244.

[104]

Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 55, 5749–5753.

[105]

Wei, X.; Lv, Y.; Shen, H. L.; Li, H.; Kang, X.; Yu, H. Z.; Zhu, M. Z. Secondary ligand engineering of nanoclusters: Effects on molecular structures, supramolecular aggregates, and optical properties. Aggregate 2023, 4, e246.

[106]

Zhou, M. M.; Qi, C. X.; Yan, X. X.; Li, X. W.; Jin, S.; Zhu, M. Z. Rapid conversion of a Au9Ag12 into a Au x Ag16- x nanocluster via bisphosphine ligand engineering. Chem.—Eur. J. 2021, 27, 17554–17558.

[107]

Krishnadas, K. R.; Sementa, L.; Medves, M.; Fortunelli, A.; Stener, M.; Fürstenberg, A.; Longhi, G.; Bürgi, T. Chiral functionalization of an atomically precise noble metal cluster: Insights into the origin of chirality and photoluminescence. ACS Nano 2020, 14, 9687–9700.

[108]

Zhang, T. S.; Fei, W. W.; Li, N.; Zhang, Y.; Xu, C.; Luo, Q. Q.; Li, M. B. Open nitrogen site-induced kinetic resolution and catalysis of a gold nanocluster. Nano Lett. 2023, 23, 235–242.

[109]

Fan, J. Q.; Yang, Y.; Tao, C. B.; Li, M. B. Cadmium-doped and pincer ligand-modified gold nanocluster for catalytic KA2 reaction. Angew. Chem., Int. Ed. 2023, 62, e202215741.

[110]

Zhang, Y.; He, S. R.; Yang, Y.; Zhang, T. S.; Zhu, Z. M.; Fei, W. W.; Li, M. B. Preorganized nitrogen sites for Au11 amidation: A generalizable strategy toward precision functionalization of metal nanoclusters. J. Am. Chem. Soc. 2023, 145, 12164–12172.

Polyoxometalates
Article number: 9140043
Cite this article:
Fei W, Tao Y, Qiao Y, et al. Structural modification and performance regulation of atomically precise metal nanoclusters by phosphine. Polyoxometalates, 2023, 2(4): 9140043. https://doi.org/10.26599/POM.2023.9140043

1573

Views

246

Downloads

1

Crossref

Altmetrics

Received: 27 September 2023
Revised: 25 October 2023
Accepted: 02 November 2023
Published: 22 November 2023
© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return