Journal Home > Volume 2 , Issue 4

An inorganic–organic hybrid Eu–W-implanted tartrate-connected selenotungstate tetramer {[Eu4(H2O)12W6O12(tar)2][B-α-SeW9O33]4}16− (1a, H4tar = tartaric acid) was successfully obtained by introducing the flexible multidentate tartrate ligand into the Se-templated lacunary polyoxometalate (POM) and lanthanide (Ln) system. Within 1a, two identical penta-nuclear Eu2W3-cluster-encapsulated dimeric units {[Eu2(H2O)6W3O6][B-α-SeW9O33]2}4− are arranged in an ''open C-shaped'' configuration, interconnected by double tetra-dentate tar4− linkers. Moreover, 1a demonstrates notable stability and intense photoluminescence (PL) emission in an aqueous environment. This emission proves effective in discriminating the toxic chemical pollutant o-nitrophenol (o-NP) from its isomers m-nitrophenol (m-NP) and p-nitrophenol (p-NP), achieving highly selective and sensitive discrimination of o-NP with a low detection limit of 0.73 μM. The practical applicability of probe 1a was demonstrated in lake water, exhibiting suitable recoveries. The PL sensing mechanism involving static quenching and competitive absorption was elucidated finally. This accomplishment sets the groundwork for the deliberate synthesis of novel organic ligands and Ln-functionalized POM hybrids. Furthermore, it propels the exploration of POM materials for the recognition of environmental pollutants.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A double-tartrate-bridged deca-nuclearity europium-tungsten cluster embedded selenotungstate and its selective optical sensing of o-nitrophenol

Show Author's information Yong-Chao Dai1,2Si-Yu Zhang2Xin-Xian Xiao2Meng-Juan Li2Jian-Cai Liu1,2( )Li-Juan Chen2 ( )Jun-Wei Zhao2 ( )
School of Energy Science and Technology, Henan University, Zhengzhou 450046, China
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China

Abstract

An inorganic–organic hybrid Eu–W-implanted tartrate-connected selenotungstate tetramer {[Eu4(H2O)12W6O12(tar)2][B-α-SeW9O33]4}16− (1a, H4tar = tartaric acid) was successfully obtained by introducing the flexible multidentate tartrate ligand into the Se-templated lacunary polyoxometalate (POM) and lanthanide (Ln) system. Within 1a, two identical penta-nuclear Eu2W3-cluster-encapsulated dimeric units {[Eu2(H2O)6W3O6][B-α-SeW9O33]2}4− are arranged in an ''open C-shaped'' configuration, interconnected by double tetra-dentate tar4− linkers. Moreover, 1a demonstrates notable stability and intense photoluminescence (PL) emission in an aqueous environment. This emission proves effective in discriminating the toxic chemical pollutant o-nitrophenol (o-NP) from its isomers m-nitrophenol (m-NP) and p-nitrophenol (p-NP), achieving highly selective and sensitive discrimination of o-NP with a low detection limit of 0.73 μM. The practical applicability of probe 1a was demonstrated in lake water, exhibiting suitable recoveries. The PL sensing mechanism involving static quenching and competitive absorption was elucidated finally. This accomplishment sets the groundwork for the deliberate synthesis of novel organic ligands and Ln-functionalized POM hybrids. Furthermore, it propels the exploration of POM materials for the recognition of environmental pollutants.

Keywords: lanthanide, selenotungstate, photoluminescence sensing, o-nitrophenol, sensing mechanism

References(47)

[1]

Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

[2]

Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.

[3]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[4]

Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.

[5]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[6]

Yang, Z. X.; Gong, F.; Lin, D. M.; Huo, Y. Recent advances in polyoxometalate-based single-molecule magnets. Coord. Chem. Rev. 2023, 492, 215205.

[7]

Huang, Q.; Niu, Q.; Li, X. F.; Liu, J.; Sun, S. N.; Dong, L. Z.; Li, S. L.; Cai, Y. P.; Lan, Y. Q. Demystifying the roles of single metal site and cluster in CO2 reduction via light and electric dual-responsive polyoxometalate-based metal-organic frameworks. Sci. Adv. 2022, 8, eadd5598.

[8]

Xia, Z. Q.; Lin, C. G.; Yang, Y.; Wang, Y. K.; Wu, Z. P.; Song, Y. F.; Russell, T. P.; Shi, S. W. Polyoxometalate-surfactant assemblies: Responsiveness to orthogonal stimuli. Angew. Chem., Int. Ed. 2022, 61, e202203741.

[9]

Zhu, M. H.; Iwano, T.; Tan, M. J.; Akutsu, D.; Uchida, S.; Chen, G. Y.; Fang, X. K. Macrocyclic polyoxometalates: Selective polyanion binding and ultrahigh proton conduction. Angew. Chem., Int. Ed. 2022, e202200666.

[10]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[11]

Li, B. L.; Xu, C.; Lv, Y. F.; Liu, G. H.; Sun, X. L.; Sun, Z. Q.; Xu, X. T.; Chen, W.; He, L.; Song, Y. F. Vanadium-substituted polyoxometalates regulate prion protein fragment 106-126 misfolding by an oxidation strategy. ACS Appl. Mater. Interfaces 2023, 15, 34497–34504.

[12]

Guo, L.; He, L.; Zhuang, Q. H.; Li, B. L.; Wang, C. F.; Lv, Y. F.; Chu, J. F.; Song, Y. F. Recent advances in confining polyoxometalates and the applications. Small 2023, 19, 2207315.

[13]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[14]

Wang, R.; Yu, P. Y.; Tan, J. Y.; Zhou, Y.; Zhang, J. Multistimuli-responsive circularly polarized luminescent material of achiral Eu-containing polyoxometalates and cellulose nanocrystals. Polyoxometalates 2022, 1, 9140009.

[15]

Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Camón, A.; Evangelisti, M.; Luis, F.; Martínez-Pérez, M. J.; Sesé, J. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: The series [LnP5W30O110]12− (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J. Am. Chem. Soc. 2012, 134, 14982–14990.

[16]

Li, Z.; Li, X. X.; Yang, T.; Cai, Z. W.; Zheng, S. T. Four-shell polyoxometalates featuring high-nuclearity Ln26 clusters: Structural transformations of nanoclusters into frameworks triggered by transition- metal ions. Angew. Chem., Int. Ed. 2017, 56, 2664–2669.

[17]

Wang, K. Y.; Bassil, B. S.; Lin, Z. G.; Römer, I.; Vanhaecht, S.; Parac-Vogt, T. N.; de Pipaón, C. S.; Galán-Mascarós, J. R.; Fan, L. Y.; Cao, J. et al. Ln12-containing 60-tungstogermanates: Synthesis, structure, luminescence, and magnetic studies. Chem.—Eur. J. 2015, 21, 18168–18176.

[18]

Li, S. R.; Wang, H. Y.; Su, H. F.; Chen, H. J.; Du, M. H.; Long, L. S.; Kong, X. J.; Zheng, L. S. A giant 3d-4f polyoxometalate super-tetrahedron with high proton conductivity. Small Methods 2021, 5, 2000777.

[19]

Liu, J. C.; Zhao, J. W.; Streb, C.; Song Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

[20]

Wang, J. X.; Wang, Y. D.; Wei, M. J.; Tan, H. Q.; Wang, Y. H.; Zang, H. Y.; Li, Y. G. Inorganic open framework based on lanthanide ions and polyoxometalates with high proton conductivity. Inorg. Chem. Front. 2018, 5, 1213–1217.

[21]

Huo, Y.; Chen, Y. C.; Wu, S. G.; Jia, J. H.; Chen, W. B.; Liu, J. L.; Tong, M. L. pH-controlled assembly of organophosphonate-bridged dysprosium(III) single-molecule magnets based on polyoxometalates. Inorg. Chem. 2018, 57, 6773–6777.

[22]

Boskovic, C. Rare earth polyoxometalates. Acc. Chem. Res. 2017, 50, 2205–2214.

[23]

Cheng, M. Y.; Wang, H. Y.; Liu, Y. F.; Shi, J. W.; Zhou, M. Q.; Du, W. X.; Zhang, D. D.; Yang, G. P. Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. Chin. Chem. Lett. 2023, 34, 107209.

[24]

Chen, W. C.; Jiao, C. Q.; Wang, X. L.; Shao, K. Z.; Su, Z. M. Self-assembly of nanoscale lanthanoid-containing selenotungstates: Synthesis, structures, and magnetic studies. Inorg. Chem. 2019, 58, 12895–12904.

[25]

Lu, J. K.; Ma, X. Y.; Singh, V.; Zhang, Y. J.; Wang, P.; Feng, J. W.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Facile CO2 cycloaddition to epoxides by using a tetracarbonyl metal selenotungstate derivate [{Mn(CO)3}4 (Se2W11O43)]8−. Inorg. Chem. 2018, 57, 14632–14643.

[26]

Yan, J.; Long, D. L.; Cronin, L. Development of a building block strategy to access gigantic nanoscale heteropolyoxotungstates by using SeO32− as a template linker. Angew. Chem., Int. Ed. 2010, 49, 4117–4120.

[27]

Gao, J.; Yan, J.; Beeg, S.; Long, D. L.; Cronin, L. One-pot versus sequential reactions in the self-assembly of gigantic nanoscale polyoxotungstates. J. Am. Chem. Soc. 2013, 135, 1796–1805.

[28]

Chen, W. C.; Qin, C.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Assembly of Mn-containing unprecedented selenotungstate clusters with photocatalytic H2 evolution activity. Cryst. Growth Des. 2016, 16, 2481–2486.

[29]

Chen, W. C.; Li, H. L.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Assembly of cerium(III)-stabilized polyoxotungstate nanoclusters with SeO32−/TeO32− templates: From single polyoxoanions to inorganic hollow spheres in dilute solution. Chem.—Eur. J. 2013, 19, 11007–11015.

[30]

Yang, L.; Li, L.; Guo, J. P.; Liu, Q. S.; Ma, P. T.; Niu, J. Y.; Wang, J. P. A nanosized gly-decorated praseodymium-stabilized selenotungstate cluster: Synthesis, structure, and oxidation catalysis. Chem.—Asian J. 2017, 12, 2441–2446.

[31]

Han, Q.; Li, Z.; Liang, X. M.; Ding, Y.; Zheng, S. T. Synthesis of a 6-nm-long transition-metal-rare-earth-containing polyoxometalate. Inorg. Chem. 2019, 58, 12534–12537.

[32]

Gong, T. T.; Yang, S.; Wang, Z. X.; Li, M. Y.; Zhang, S. Y.; Liu, J. C.; Chen, L. J.; Zhao, J. W. Dual-ligand-functionalized dodeca-nuclear lanthanide-tungsten-cluster incorporated selenotungstates and fluorescence detection of dipicolinic acid (an anthrax biomarker). Inorg. Chem. Front. 2023, 10, 2799–2810.

[33]

Liu, L. L.; Jiang, J.; Liu, G. P.; Jia, X. D.; Zhao, J. W.; Chen, L. J.; Yang, P. Hexameric to trimeric lanthanide-included selenotungstates and their 2D honeycomb organic-inorganic hybrid films used for detecting ochratoxin A. ACS Appl. Mater. Interfaces 2021, 13, 35997–36010.

[34]

Taleghani, S.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Frontera, A. Tuning the topology of hybrid inorganic-organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective. Coord. Chem. Rev. 2016, 309, 84–106.

[35]

Liu, J. L.; Wang, D.; Xu, X.; Li, H. L.; Zhao, J. W.; Chen, L. J. Multi-nuclear rare-earth-implanted tartaric acid-functionalized selenotungstates and their fluorescent and magnetic properties. Inorg. Chem. 2021, 60, 2533–2541.

[36]

Saravanan, S.; Ahmad, R.; Kasthuri, S.; Pal, K.; Raviteja, S.; Nagaraaj, P.; Hoogenboom, R.; Nutalapati, V.; Maji, S. Pyrazoloanthrone-functionalized fluorescent copolymer for the detection and rapid analysis of nitroaromatics. Mater. Chem. Front. 2021, 5, 238–248.

[37]

Sodkhomkhum, R.; Masik, M.; Watchasit, S.; Suksai, C.; Boonmak, J.; Youngme, S.; Wanichacheva, N.; Ervithayasuporn, V. Imidazolylmethylpyrene sensor for dual optical detection of explosive chemical: 2,4,6-Trinitrophenol. Sens. Actuators B: Chem. 2017, 245, 665–673.

[38]

Chhatwal, M.; Mittal, R.; Gupta, R. D.; Awasthi, S. K. Sensing ensembles for nitroaromatics. J. Mater. Chem. C 2018, 6, 12142–12158.

[39]

Gao, X. T.; Chen, N. N.; Cao, M. L.; Shi, Y.; Zhang, Q. F. A water-stable 3D Eu(III)-organic framework as a bi-functional ratiometric luminescent sensor for fast, sensitive and selective detection of ODZ and Hg2+ in aqueous media. Chin. J. Struct. Chem. 2022, 41, 2211110–2211116.

[40]

Huang, F. Z.; Li, X. H.; Zhang, Z.; Jiang, Z. Q.; Wang, G. Q.; Li, L. Y.; Yu Y. An ultra-stable Eu3+ doped yttrium coordination polymer with dual-function sensing for Cr(VI) and Fe(III) ions in aqueous solution. Chin. J. Struct. Chem. 2022, 41, 2204068–2204074.

[41]

Zhang, J. H.; Dai, L. X.; Webster, A. M.; Chan, W. T. K.; Mackenzie, L. E.; Pal, R.; Cobb, S. L.; Law, G. L. Unusual magnetic field responsive circularly polarized luminescence probes with highly emissive chiral europium(III) complexes. Angew. Chem., Int. Ed. 2021, 60, 1004–1010.

[42]

Zheng, W.; Zhou, S. Y.; Xu, J.; Liu, Y. S.; Huang, P.; Liu, Y.; Chen, X. Y. Ultrasensitive luminescent in vitro detection for tumor markers based on inorganic lanthanide nano-bioprobes. Adv. Sci. 2016, 3, 1600197.

[43]

Yamase, T. Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–326.

[44]

Wu, S. Y.; Lin, Y. N.; Liu, J. W.; Shi, W.; Yang, G. M.; Cheng, P. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor. Adv. Funct. Mater. 2018, 28, 1707169.

[45]

Feng, L.; Dong, C. L.; Li, M. F.; Li, L. X.; Jiang, X.; Gao, R.; Wang, R. J.; Zhang, L. J.; Ning, Z. L.; Gao, D. J. et al. Terbium-based metal-organic frameworks: Highly selective and fast respond sensor for styrene detection and construction of molecular logic gate. J. Hazard. Mater. 2020, 388, 121816.

[46]

Han, Y. X.; Chen, Y. L.; Feng, J.; Na, M.; Liu, J. J.; Ma, Y. X.; Ma, S. D.; Chen, X. G. Investigation of nitrogen content effect in reducing agent to prepare wavelength controllable fluorescent silicon nanoparticles and its application in detection of 2-nitrophenol. Talanta 2019, 194, 822–829.

[47]

Wang, L.; Fan, G. L.; Xu, X. F.; Chen, D. M.; Wang, L.; Shi, W.; Cheng, P. Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metal-organic framework. J. Mater. Chem. A 2017, 5, 5541–5549.

File
0041_ESM1.pdf (3.2 MB)
0041_ESM2.cif (79.7 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 August 2023
Revised: 17 September 2023
Accepted: 11 October 2023
Published: 03 November 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22071042, 22101072, 22171070, and 21871077), the Program for Innovation Teams in Science and Technology in Universities of Henan Province (No. 20IRTSTHN004), and China Postdoctoral Science Foundation (No. 2021M701067).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return