Journal Home > Volume 2 , Issue 3

Polyoxometalate (POM)-based binary and ternary hybrids, including combinations of POMs, semiconductors, nanostructured carbon (carbon nanotubes, graphene, carbon dots, etc.), and metal nanoparticles (MNPs), are key materials in photoelectrocatalysis. POM plays a key role in the construction of nanohybrids and contributes to their photoelectrochemical catalytic properties. These composites combine the properties of two or three functional nanoscale materials, resulting in a wide range of applications, including catalysis, energy conversion and storage, molecular sensors, and electronics. Herein, we summarize the latest progress in POM-based binary nanohybrids (POM/metal, POM/semiconductor, and POM/nanocarbon) and ternary nanohybrids (metal/POM/nanocarbon), particularly in energy materials for photocatalysis, fuel cells, biosensors, and photoelectrochemical devices. Current applications are critically assessed, and promising target systems are discussed.


menu
Abstract
Full text
Outline
About this article

Design and synthesis of novel polyoxometalate-based binary and ternary nanohybrids for energy conversion and storage

Show Author's information Shuangshuang Zhang1,2Rongji Liu3Carsten Streb3 ( )Guangjin Zhang1,4,5 ( )
Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Polyoxometalate (POM)-based binary and ternary hybrids, including combinations of POMs, semiconductors, nanostructured carbon (carbon nanotubes, graphene, carbon dots, etc.), and metal nanoparticles (MNPs), are key materials in photoelectrocatalysis. POM plays a key role in the construction of nanohybrids and contributes to their photoelectrochemical catalytic properties. These composites combine the properties of two or three functional nanoscale materials, resulting in a wide range of applications, including catalysis, energy conversion and storage, molecular sensors, and electronics. Herein, we summarize the latest progress in POM-based binary nanohybrids (POM/metal, POM/semiconductor, and POM/nanocarbon) and ternary nanohybrids (metal/POM/nanocarbon), particularly in energy materials for photocatalysis, fuel cells, biosensors, and photoelectrochemical devices. Current applications are critically assessed, and promising target systems are discussed.

Keywords: electrocatalysis, polyoxometalate, photoelectrocatalysis, binary nanohybrids, ternary nanohybrids

References(198)

[1]

Qin, J. Q.; Yang, Z.; Xing, F. F.; Zhang, L. Z.; Zhang, H. T.; Wu, Z. S. Two-dimensional mesoporous materials for energy storage and conversion: Current status, chemical synthesis and challenging perspectives. Electrochem. Energy Rev. 2023, 6, 9.

[2]

Li, D. Z.; Liu, H.; Feng, L. G. A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuels 2020, 34, 13491–13522.

[3]

Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

[4]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[5]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

[6]

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

[7]

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

[8]

Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

[9]

Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

[10]

Ciriminna, R.; Pagliaro, M.; Luque, R. Heterogeneous catalysis under flow for the 21st century fine chemical industry. Green Energy Environ. 2021, 6, 161–166.

[11]

Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432.

[12]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[13]

Li, J.; Triana, C. A.; Wan, W.; Saseendran, D. P. A.; Zhao, Y.; Balaghi, S. E.; Heidari, S.; Patzke, G. R. Molecular and heterogeneous water oxidation catalysts: Recent progress and joint perspectives. Chem. Soc. Rev. 2021, 50, 2444–2485.

[14]

Horn, M. R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P. et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy Environ. Sci. 2021, 14, 1652–1700.

[15]

Liu, R. J.; Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 2021, 11, 2101120.

[16]

Cao, Y. W.; Chen, Q. Y.; Shen, C. R.; He, L. Polyoxometalate-based catalysts for CO2 conversion. Molecules 2019, 24, 2069.

[17]

Najafi, M. Polyoxometalate-based inorganic-organic hybrids as heterogeneous catalysts for asymmetric and tandem reactions. ChemCatChem 2023, 15, e202201045.

[18]

Bagheri, A. R.; Aramesh, N.; Chen, J. S.; Liu, W. N.; Shen, W.; Tang, S.; Lee, H. K. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal. Chim. Acta 2022, 1209, 339509.

[19]

Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.

[20]

Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S. K. et al. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51.

[21]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[22]

Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717.

[23]

Kortz, U. Polyoxometalates. Eur. J. Inorg. Chem. 2009, 2009, 5056.

[24]

Tiwari, C. K.; Roy, S.; Tubul-Sterin, T.; Baranov, M.; Leffler, N.; Li, M.; Yin, P. C.; Neyman, A.; Weinstock, I. A. Emergence of visible-light water oxidation upon hexaniobate-ligand entrapment of quantum-confined copper-oxide cores. Angew. Chem., Int. Ed. 2023, 62, e202213762.

[25]

Dey, C. Polyoxometalate clusters: Inorganic ligands for functional materials. J. Cluster Sci. 2022, 33, 1839–1856.

[26]

Li, Q. Y.; Zhang, L.; Dai, J. L.; Tang, H.; Li, Q.; Xue, H. G.; Pang, H. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem. Eng. J. 2018, 351, 441–461.

[27]

Suzuki, K.; Yamaguchi, K. Precise design of polyoxometalates and their application to photocatalyst. J. Synth. Org. Chem., Japan 2022, 80, 149–157.

[28]

Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220.

[29]

Fabre, B.; Falaise, C.; Cadot, E. Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: Recent advances and prospects. ACS Catal. 2022, 12, 12055–12091.

[30]

Chen, X. F.; Wu, H. Z.; Shi, X. J.; Wu, L. X. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. Nanoscale 2023, 15, 9242–9255.

[31]

Jiang, Y.; Liang, Y.; Zhang, M. X.; Zhang, Z.; Liu, Y. W., Enhanced catalytic aryl alkene oxidation by constructing hierarchical polyoxometalate-based metal-organic fFramework. Eur. J. Inorg. Chem. 2023, 26, e202300301.

[32]

Granadeiro, C. M.; Julião, D.; Ribeiro, S. O.; Cunha-Silva, L.; Balula, S. S. Recent advances in lanthanide-coordinated polyoxometalates: From structural overview to functional materials. Coord. Chem. Rev. 2023, 476, 214914.

[33]

Kruse, J. H.; Langer, M.; Romanenko, I.; Trentin, I.; Hernández-Castillo, D.; González, L.; Schacher, F. H.; Streb, C. Polyoxometalate-soft matter composite materials: Design strategies, applications, and future directions. Adv. Funct. Mater. 2022, 32, 2208428.

[34]

Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

[35]

Liu, Z. Y.; Lin, Y. D.; Yu, H.; Chen, H. N.; Guo, Z. W.; Li, X. X.; Zheng, S. T. Recent advances in polyoxoniobate-catalyzed reactions. Tungsten 2022, 4, 81–98.

[36]

Cheng, D. M.; Li, K.; Zang, H. Y.; Chen, J. J. Recent advances on polyoxometalate-based ion-conducting electrolytes for energy-related devices. Energy Environ. Mater. 2023, 6, e12341.

[37]

He, S. Q.; Liu, Q. D.; Wang, X. Polyoxometalate-based materials: Quasi-homogeneous single-atom catalysts with atomic-precision structures. J. Mater. Chem. A 2022, 10, 5758–5770.

[38]

Chen, T. T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.

[39]

Luo, Y. Q.; Guo, X. T.; Yuan, M. J.; Yan, Y.; Chen, C. Y.; Pang, H. γ-MnOOH nanowires hydrothermally reduced by leaves for high-efficiency electrocatalysis of the glucose oxidation reaction. ACS Sustainable Chem. Eng. 2019, 7, 8972–8978.

[40]

Yuan, G. Q.; Yu, S. K.; Jie, J.; Wang, C.; Li, Q.; Pang, H. Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. Chin. Chem. Lett. 2020, 31, 1941–1945.

[41]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[42]

Cherevan, A. S.; Nandan, S. P.; Roger, I.; Liu, R. J.; Streb, C.; Eder, D. Polyoxometalates on functional substrates: Concepts, synergies, and future perspectives. Adv. Sci. 2020, 7, 1903511.

[43]

Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.

[44]

Freire, C.; Fernandes, D. M.; Nunes, M.; Abdelkader, V. K. POM & MOF-based electrocatalysts for energy-related reactions. ChemCatChem 2018, 10, 1703–1730.

[45]

Zhang, S. W.; Ou, F. X.; Ning, S. G.; Cheng, P. Polyoxometalate-based metal-organic frameworks for heterogeneous catalysis. Inorg. Chem. Front. 2021, 8, 1865–1899.

[46]

Guo, L.; He, L.; Zhuang, Q. H.; Li, B. L.; Wang, C. F.; Lv, Y. F.; Chu, J. F.; Song, Y. F. Recent advances in confining polyoxometalates and the applications. Small 2023, 19, 2207315.

[47]

Chen, Y.; Li, F. B.; Li, S. B.; Zhang, L.; Sun, M. A review of application and prospect for polyoxometalate-based composites in electrochemical sensor. Inorg. Chem. Commun. 2022, 135, 109084.

[48]

Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W.; Chen, L. J. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.

[49]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[50]

Xia, K.; Yamaguchi, K.; Suzuki, K. Recent advances in hybrid materials of metal nanoparticles and polyoxometalates. Angew. Chem., Int. Ed. 2023, 62, e202214506.

[51]

Wang, D.; Liu, L. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook. Nanoscale 2020, 12, 5705–5718.

[52]

Zhang, Q.; Li, F. Y.; Xu, L. Application of polyoxometalates in third-generation solar cells. Polyoxometalates 2023, 2, 9140018.

[53]

Wang, Y. F.; Weinstock, I. A. Polyoxometalate-decorated nanoparticles. Chem. Soc. Rev. 2012, 41, 7479–7496.

[54]

Mitchell, S. G.; de la Fuente, J. M. The synergistic behavior of polyoxometalates and metal nanoparticles: From synthetic approaches to functional nanohybrid materials. J. Mater. Chem. 2012, 22, 18091–18100.

[55]

Gumerova, N. I.; Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.

[56]

Gao, Y. T.; Choudhari, M.; Such, G. K.; Ritchie, C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chem. Sci. 2022, 13, 2510–2527.

[57]

Troupis, A.; Hiskia, A.; Papaconstantinou, E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. 3.0.CO;2-0">Angew. Chem., Int. Ed. 2002, 41, 1911–1914.

[58]

Kulesza, P. J.; Chojak, M.; Karnicka, K.; Miecznikowski, K.; Palys, B.; Lewera, A.; Wieckowski, A. Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles. Chem. Mater 2004, 4128–4134.

[59]

Zhu, X.; Chen, L. Y.; Liu, Y. G.; Tang, Z. H. Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: Progress and perspectives. Polyoxometalates 2023, 2, 9140031.

[60]

Troupis, A.; Hiskia, A.; Papaconstantinou, E. Reduction and recovery of metals from aqueous solutions with polyoxometallates. New J. Chem. 2001, 25, 361–363.

[61]

Mandal, S.; Selvakannan, P. R.; Pasricha, R.; Sastry, M. Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles. J. Am. Chem. Soc. 2003, 125, 8440–8441.

[62]

Yang, L. B.; Shen, Y. H.; Xie, A. J.; Zhang, B. C. Facile size-controlled synthesis of silver nanoparticles in UV-irradiated tungstosilicate acid solution. J. Phys. Chem. C 2007, 111, 5300–5308.

[63]

Goberna-Ferrón, S.; Cots, L.; Perich, M. P.; Zhu, J. J.; Gómez-Romero, P. Polyoxometalate-stabilized silver nanoparticles and hybrid electrode assembly using activated carbon. Nanomaterials 2023, 13, 2241.

[64]

Keita, B.; Zhang, G. J.; Dolbecq, A.; Mialane, P.; Sécheresse, F.; Miserque, F.; Nadjo, L. MoV-MoVI mixed valence polyoxometalates for facile synthesis of stabilized metal nanoparticles: Electrocatalytic oxidation of alcohols. J. Phys. Chem. C 2007, 111, 8145–8148.

[65]

Zhang, G. J.; Keita, B.; Dolbecq, A.; Mialane, P.; Sécheresse, F.; Miserque, F.; Nadjo, L. Green chemistry-type one-step synthesis of silver nanostructures based on MoV-MoVI mixed-valence polyoxometalates. Chem. Mater. 2007, 19, 5821–5823.

[66]

Zhang, G. J.; Keita, B.; Biboum, R. N.; Miserque, F.; Berthet, P.; Dolbecq, A.; Mialane, P.; Catala, L.; Nadjo, L. Synthesis of various crystalline gold nanostructures in water: The polyoxometalate β-[H4PMo12O40]3− as the reducing and stabilizing agent. J. Mater. Chem. 2009, 19, 8639–8644.

[67]

Kim, H.; You, Y.; Kang, D.; Jeon, D.; Bae, S.; Shin, Y.; Lee, J.; Lee, J.; Ryu, J. Modular layer-by-layer assembly of polyelectrolytes, nanoparticles, and molecular catalysts into solar-to-chemical energy conversion devices. Adv. Funct. Mater. 2019, 29, 1906407.

[68]

Yaqub, A.; Gilani, S. R.; Bilal, S.; Hayat, A.; Asif, A.; Siddique, S. A. Efficient preparation of a nonenzymatic nanoassembly based on cobalt-substituted polyoxometalate and polyethylene imine-capped silver nanoparticles for the electrochemical sensing of carbofuran. ACS Omega 2022, 7, 149–159.

[69]

Nunes, B. N.; Paula, L. F.; Costa, Í. A.; Machado, A. E. H.; Paterno, L. G.; Patrocinio, A. O. T. Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. J. Photochem. Photobiol. C 2017, 32, 1–20.

[70]

Xiang, Y.; Lu, S.; Jiang, S. P. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem. Soc. Rev. 2012, 41, 7291–7321.

[71]

Gao, S.; Wu, Z.; Pan, D.; Lin, Z.; Cao, R. Preparation and characterization of polyoxometalate-Ag nanoparticles composite multilayer films. Thin Solid Films 2011, 519, 2317–2322.

[72]

Leiser, S. S.; Polin, L.; Gan-Or, G.; Raula, M.; Weinstock, I. A. Hexaniobate cluster anion monolayers on gold nanoparticles: A new structural role for alkali metal countercations. Inorg. Chem. 2019, 58, 1012–1015.

[73]

Maayan, G.; Neumann, R. Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate. Chem. Commun. 2005, 4595–4597.

[74]

Sun, G. Y.; Li, Q. Y.; Xu, R.; Gu, J. M.; Ju, M. L.; Wang, E. B. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process. J. Solid State Chem. 2010, 183, 2609–2615.

[75]

Martín, S.; Takashima, Y.; Lin, C. G.; Song, Y. F.; Miras, H. N.; Cronin, L. Integrated synthesis of gold nanoparticles coated with polyoxometalate clusters. Inorg. Chem. 2019, 58, 4110–4116.

[76]

Ernst, A. Z.; Sun, L. S.; Wiaderek, K.; Kolary, A.; Zoladek, S.; Kulesza, P. J.; Cox, J. A. Synthesis of polyoxometalate-protected gold nanoparticles by a ligand-exchange method: Application to the electrocatalytic reduction of bromate. Electroanalysis 2007, 19, 2103–2109.

[77]

Yonesato, K.; Ito, H.; Itakura, H.; Yokogawa, D.; Kikuchi, T.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with polyoxometalates. J. Am. Chem. Soc. 2019, 141, 19550–19554.

[78]

Yonesato, K.; Ito, H.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. An ultrastable, small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew. Chem., Int. Ed. 2020, 59, 16361–16365.

[79]

Yonesato, K.; Yamazoe, S.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. A molecular hybrid of an atomically precise silver nanocluster and polyoxometalates for H2 cleavage into protons and electrons. Angew. Chem., Int. Ed. 2021, 60, 16994–16998.

[80]

Kikukawa, Y.; Kuroda, Y.; Suzuki, K.; Hibino, M.; Yamaguchi, K.; Mizuno, N. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 2013, 49, 376–378.

[81]

Yonesato, K.; Yanai, D.; Yamazoe, S.; Yokogawa, D.; Kikuchi, T.; Yamaguchi, K.; Suzuki, K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 2023, 15, 940–947.

[82]

Luo, W. J.; Hu, J.; Diao, H. L.; Schwarz, B.; Streb, C.; Song, Y. F. Robust polyoxometalate/nickel foam composite electrodes for sustained electrochemical oxygen evolution at high pH. Angew. Chem., Int. Ed. 2017, 56, 4941–4944.

[83]

Jia, X. Y.; Streb, C.; Song, Y. F. Devisable POM/Ni foam composite: Precisely control synthesis toward enhanced hydrogen evolution reaction at high pH. Chem.—Eur. J. 2019, 25, 15548–15554.

[84]

Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.

[85]

Lan, J.; Wang, Y.; Huang, B.; Xiao, Z. C.; Wu, P. F. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv. 2021, 3, 4646–4658.

[86]

Ullah, I.; Munir, A.; Haider, A.; Ullah, N.; Hussain, I. Supported polyoxometalates as emerging nanohybrid materials for photochemical and photoelectrochemical water splitting. Nanophotonics 2021, 10, 1595–1620.

[87]

Tian, J. M.; Jiang, B.; Shao, H.; Wang, Y. T.; Wang, T. Q.; Li, F.; Li, D.; Yang, Y.; Dong, X. T. A new strategy to one-step construct polyoxometalate/semiconductor one-dimensional tandem heterojunctions toward optimized conductometric sensing performances of ethanol gas. Sens. Actuators B Chem. 2023, 374, 132797.

[88]

Micek-Ilnicka, A.; Ogrodowicz, N.; Filek, U.; Kusior, A. The role of TiO2 polymorphs as support for the Keggin-type tungstophosphoric heteropolyacid as catalysts for n-butanol dehydration. Catal. Today 2021, 380, 84–92.

[89]

Chakraborty, B.; Weinstock, I. A. Water-soluble titanium-oxides: Complexes, clusters and nanocrystals. Coord. Chem. Rev. 2019, 382, 85–102.

[90]

Yoon, M.; Chang, J. A.; Kim, Y.; Choi, J. R.; Kim, K.; Lee, S. J. Heteropoly acid-incorporated TiO2 colloids as novel photocatalytic systems resembling the photosynthetic reaction center. J. Phys. Chem. B 2001, 105, 2539–2545.

[91]

Liu, R. J.; Shang, X. K.; Li, C. X.; Xing, X. L.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Cao, H. B.; Bi, L. H. High nuclearity Co polyoxometalate based artificial photosynthesis for solar hydrogen generation. Int. J. Hydrogen Energy 2013, 38, 9954–9960.

[92]

Bertolini, G. R.; Pizzio, L. R.; Kubacka, A.; Muñoz-Batista, M. J.; Fernández-García, M. Composite H3PW12O40-TiO2 catalysts for toluene selective photo-oxidation. Appl. Catal. B Environ. 2018, 225, 100–109.

[93]

Raula, M.; Or, G. G.; Saganovich, M.; Zeiri, O.; Wang, Y. F.; Chierotti, M. R.; Gobetto, R.; Weinstock, I. A. Polyoxometalate complexes of anatase-titanium dioxide cores in water. Angew. Chem., Int. Ed. 2015, 54, 12416–12421.

[94]

Tang, Q. W.; An, X. Q.; Lan, H. C.; Liu, H. J.; Qu, J. H. Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation. Appl. Catal. B Environ. 2020, 268, 118394.

[95]

Wang, T. Q.; Sun, Z. X.; Li, F. Y.; Xu, L. Nanostructured polyoxometalate-modified SnO2 photoanode with improved photoelectrochemical performance. Electrochem. Commun. 2014, 47, 45–48.

[96]

Bai, Z. Y.; Zhou, C. L.; Xu, H. B.; Wang, G. N.; Pang, H. J.; Ma, H. Y. Polyoxometalates-doped Au nanoparticles and reduced graphene oxide: A new material for the detection of uric acid in urine. Sens. Actuators B Chem. 2017, 243, 361–371.

[97]

Tao, R.; Zhang, Y. Z.; Jin, Z. B.; Sun, Z. X.; Xu, L. Polyoxometalate doped tin oxide as electron transport layer for low cost, hole-transport-material-free perovskite solar cells. Electrochim. Acta 2018, 284, 10–17.

[98]

Luo, X. Z.; Li, F. Y.; Xu, B. B.; Sun, Z. X.; Xu, L. Enhanced photovoltaic response of the first polyoxometalate-modified zinc oxide photoanode for solar cell application. J. Mater. Chem. 2012, 22, 15050–15055.

[99]

Duan, Y.; Chakraborty, B.; Tiwari, C. K.; Baranov, M.; Tubul, T.; Leffler, N.; Neyman, A.; Weinstock, I. A. Solution-state catalysis of visible light-driven water oxidation by macroanion-like inorganic complexes of γ-FeOOH nanocrystals. ACS Catal. 2021, 11, 11385–11395.

[100]

Liu, R. J.; Li, S. W.; Zhang, G. J.; Dolbecq, A.; Mialane, P.; Keita, B. Polyoxometalate-mediated green synthesis of graphene and metal nanohybrids: High-performance electrocatalysts. J. Cluster Sci. 2014, 25, 711–740.

[101]

Evtushok, V. Y.; Lopatkin, V. A.; Podyacheva, O. Y.; Kholdeeva, O. A. Immobilization of polyoxometalates on carbon nanotubes: Tuning catalyst activity, selectivity and stability in H2O2-based oxidations. Catalysts 2022, 12, 472.

[102]

Ji, Y. C.; Hu, J.; Biskupek, J.; Kaiser, U.; Song, Y. F.; Streb, C. Polyoxometalate-based bottom-up fabrication of graphene quantum dot/manganese vanadate composites as lithium ion battery anodes. Chem.—Eur. J. 2017, 23, 16637–16643.

[103]

Chen, W.; Huang, L. J.; Hu, J.; Li, T. F.; Jia, F. F.; Song, Y. F. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Phys. Chem. Chem. Phys. 2014, 16, 19668–19673.

[104]

Genovese, M.; Lian, K. Polyoxometalate modified inorganic-organic nanocomposite materials for energy storage applications: A review. Curr. Opin. Solid State Mater. Sci. 2015, 19, 126–137.

[105]

Jordan, J. W.; Lowe, G. A.; McSweeney, R. L.; Stoppiello, C. T.; Lodge, R. W.; Skowron, S. T.; Biskupek, J.; Rance, G. A.; Kaiser, U.; Walsh, D. A. et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv. Mater. 2019, 31, 1904182.

[106]

Jordan, J. W.; Cameron, J. M.; Lowe, G. A.; Rance, G. A.; Fung, K. L. Y.; Johnson, L. R.; Walsh, D. A.; Khlobystov, A. N.; Newton, G. N. Stabilization of polyoxometalate charge carriers via Redox-driven nanoconfinement in single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2022, 61, e202115619.

[107]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[108]

Li, S. J.; Zhao, Y.; Knoll, S.; Liu, R. J.; Li, G.; Peng, Q. P.; Qiu, P. T.; He, D. F.; Streb, C.; Chen, X. N. High proton-conductivity in covalently linked polyoxometalate-organoboronic acid-polymers. Angew. Chem., Int. Ed. 2021, 60, 16953–16957.

[109]

Huo, Z. H.; Liang, Y. M.; Yang, S.; Zang, D. J.; Farha, R.; Goldmann, M.; Xu, H. L.; Antoine, B.; Matricardi, E.; Izzet, G. et al. Photocurrent generation from visible light irradiation of covalent polyoxometalate-porphyrin copolymers. Electrochim. Acta 2021, 368, 137635.

[110]

Alshehri, S. A.; Al-Yasari, A.; Marken, F.; Fielden, J. Covalently linked polyoxometalate-polypyrrole hybrids: Electropolymer materials with dual-mode enhanced capacitive energy storage. Macromolecules 2020, 53, 11120–11129.

[111]

Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

[112]

Chen, S.; Xiang, Y. F.; Banks, M. K.; Xu, W. J.; Peng, C.; Wu, R. X. Polyoxometalate-coupled graphene nanohybrid via gemini surfactants and its electrocatalytic property for nitrite. Appl. Surf. Sci. 2019, 466, 110–118.

[113]

Madonia, A.; Martin-Sabi, M.; Sciortino, A.; Agnello, S.; Cannas, M.; Ammar, S.; Messina, F.; Schaming, D. Highly efficient electron transfer in a carbon dot-polyoxometalate nanohybrid. J. Phys. Chem. Lett. 2020, 11, 4379–4384.

[114]

Chen, S.; Xiang, Y. F.; Banks, M. K.; Peng, C.; Xu, W. J.; Wu, R. X. Polyoxometalate-coupled MXene nanohybrid via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 2018, 10, 20043–20052.

[115]

Chao, H. X.; Qin, H. Q.; Zhang, M. D.; Huang, Y. C.; Cao, L. F.; Guo, H. L.; Wang, K.; Teng, X. L.; Cheng, J. K.; Lu, Y. K. et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets. Adv. Funct. Mater. 2021, 31, 2007636.

[116]

Zhu, J. J.; Gomez-Romero, P. Polyoxometalate intercalated MXene with enhanced electrochemical stability. Nanoscale 2022, 14, 14921–14934.

[117]

Zhou, S. J.; Gu, C. X.; Li, Z. Z.; Yang, L. Y.; He, L. H.; Wang, M. H.; Huang, X. Y.; Zhou, N.; Zhang, Z. H. Ti3C2T x MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci. 2019, 498, 143889.

[118]

Ma, D.; Liang, L. Y.; Chen, W.; Liu, H. M.; Song, Y. F. Covalently tethered polyoxometalate-pyrene hybrids for noncovalent sidewall functionalization of single-walled carbon nanotubes as high-performance anode material. Adv. Funct. Mater. 2013, 23, 6100–6105.

[119]

Feng, Y. H.; Han, Z. G.; Peng, J.; Lu, J.; Xue, B.; Li, L.; Ma, H. Y.; Wang, E. B. Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan. Mater. Lett. 2006, 60, 1588–1593.

[120]

Liu, S. P.; Xu, L.; Li, F. Y.; Guo, W. H.; Xing, Y.; Sun, Z. X. Carbon nanotubes-assisted polyoxometalate nanocomposite film with enhanced electrochromic performance. Electrochim. Acta 2011, 56, 8156–8162.

[121]

Chu, D.; Qu, X.; Zhang, S.; Liu, Z.; Wang, J.; Zhou, L.; Fu, B.; Jin, H.; Yang, Y. Polyoxometalate/MXene hybrid film with a 3D porous structure for high-performance electrochromic supercapacitors. Mater. Today Chem. 2023, 30, 101561.

[122]

Huang, B.; Yang, D. H.; Han, B. H. Application of polyoxometalate derivatives in rechargeable batteries. J. Mater. Chem. A 2020, 8, 4593–4628.

[123]

Zhao, T. T.; Bell, N. L.; Chisholm, G.; Kandasamy, B.; Long, D. L.; Cronin, L. Aqueous solutions of super reduced polyoxotungstates as electron storage systems. Energy Environ. Sci. 2023, 16, 2603–2610.

[124]

Li, Q. G.; Wang, Y. H.; Yu, J.; Yuan, M. L.; Tan, Q. Q.; Zhong, Z. Y.; Su, F. B. High-performance Si-containing anode materials in lithium-ion batteries: A superstructure of Si@Co-NC composite works effectively. Green Energy Environ. 2022, 7, 116–129.

[125]

Liu, J. H.; Yu, M. Y.; Yang, J.; Liu, Y. Y.; Ma, J. F. Polyoxometalate-based complex/graphene for high-rate lithium-ion batteries. Microporous Mesoporous Mater. 2021, 310, 110666.

[126]

Wang, J. X.; Liu, Y. B.; Sha, Q.; Cao, D. W.; Hu, H. B.; Shen, T. Y.; He, L.; Song, Y. F. Electronic structure reconfiguration of self-supported polyoxometalate-based lithium-ion battery anodes for efficient lithium storage. ACS Appl. Mater. Interfaces 2022, 14, 1169–1176.

[127]

Guo, L.; Cao, L. Y.; He, J. J.; Huang, J. F.; Li, J. Y.; Kajiyoshi, K.; Chen, S. Y. Layered-structure (NH4)2Mo4O13@N-doped porous carbon composite as a superior anode for lithium-ion batteries. Chem. Commun. 2020, 56, 7757–7760.

[128]

Ji, Y. C.; Hu, J.; Huang, L. J.; Chen, W.; Streb, C.; Song, Y. F. Covalent attachment of anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries. Chem.—Eur. J. 2015, 21, 6469–6474.

[129]

Huang, L. J.; Hu, J.; Ji, Y. C.; Streb, C.; Song, Y. F. Pyrene-anderson-modified CNTs as anode materials for lithium-ion batteries. Chem.—Eur. J. 2015, 21, 18799–18804.

[130]

Hu, J.; Ji, Y. C.; Chen, W.; Streb, C.; Song, Y. F. “Wiring” redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy. Energy Environ. Sci. 2016, 9, 1095–1101.

[131]

Li, X.; Zhou, K. F.; Tong, Z. B.; Yang, X. Y.; Chen, C. Y.; Shang, X. H.; Sha, J. Q. Heightened integration of POM-based metal-organic frameworks with functionalized single-walled carbon nanotubes for superior energy storage. Chem.—Asian J. 2019, 14, 3424–3430.

[132]

Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427.

[133]

Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519.

[134]

Razaq, A.; Bibi, F.; Zheng, X. X.; Papadakis, R.; Jafri, S. H. M.; Li, H. Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials 2022, 15, 1012.

[135]

Wang, J. F.; Jin, X. X.; Li, C. H.; Wang, W. J.; Wu, H.; Guo, S. Y. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chem. Eng. J. 2019, 370, 831–854.

[136]

Yu, S. Y.; Zhang, C.; Yang, H. Two-dimensional metal nanostructures: From theoretical understanding to experiment. Chem. Rev. 2023, 123, 3443–3492.

[137]

Liu, C.; Wu, F.; Su, Q. Q.; Qian, W. P. Template preparation and application in biological detection of porous noble metal nanostructures. Prog. Chem. 2019, 31, 1396–1405.

[138]

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

[139]

Zhu, Q. L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 2016, 1, 220–245.

[140]

Chen, Q.; Nie, Y.; Ming, M.; Fan, G. Y.; Zhang, Y.; Hu, J. S. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. Chin. J. Catal. 2020, 41, 1791–1811.

[141]

Jiwanti, P. K.; Sultana, S.; Wicaksono, W. P.; Einaga, Y. Metal modified carbon-based electrode for CO2 electrochemical reduction: A review. J. Electroanal. Chem. 2021, 898, 115634.

[142]

Karczmarska, A.; Adamek, M.; El Houbbadi, S.; Kowalczyk, P.; Laskowska, M. Carbon-supported noble-metal nanoparticles for catalytic applications-a review. Crystals 2022, 12, 584.

[143]

Theerthagiri, J.; Lee, S. J.; Karuppasamy, K.; Park, J.; Yu, Y.; Kumari, M. L. A.; Chandrasekaran, S.; Kim, H. S.; Choi, M. Y. Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. J. Hazard. Mater. 2021, 420, 126648.

[144]

Yuan, M. L.; Sun, Y.; Yang, Y.; Zhang, J. X.; Dipazir, S.; Zhao, T. K.; Li, S. W.; Xie, Y. B.; Zhao, H.; Liu, Z. J. et al. Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N, P-codoped carbon hybrids. Green Energy Environ. 2021, 6, 866–874.

[145]

Zheng, Z. L.; Jin, J. D.; Dong, J. C.; Li, B.; Xu, G. K.; Li, J. F.; Shchukin, D. G. Unusual sonochemical assembly between carbon allotropes for high strain-tolerant conductive nanocomposites. ACS Nano 2019, 13, 12062–12069.

[146]

Jiang, Y. C.; Liu, Z.; Song, J. L.; Chang, I.; Zeng, J. H. Preparation and characterization of bimetallic Pt^Ni-P/CNT catalysts via galvanic displacement reaction on electrolessly-plated Ni-P/CNT. Green Energy Environ. 2018, 3, 360–367.

[147]

Arai, S.; Murakami, I.; Shimizu, M.; Oshigane, A. Fabrication of CNT/Cu composite yarn via single-step electrodeposition. J. Electrochem. Soc. 2020, 167, 102509.

[148]

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Kar, K. K.; Matsuda, A. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 2019, 75, 100786.

[149]

Shi, J. Y.; Gupta, R. K.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[150]

Moon, G. H.; Park, Y.; Kim, W.; Choi, W. Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate. Carbon 2011, 49, 3454–3462.

[151]

Li, S. W.; Yu, X. L.; Zhang, G. J.; Ma, Y.; Yao, J. N.; Keita, B.; Louis, N.; Zhao, H. Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: Visible light photocatalytic activities. J. Mater. Chem. 2011, 21, 2282–2287.

[152]

Li, S. W.; Yu, X. L.; Zhang, G. J.; Ma, Y.; Yao, J. N.; de Oliveira, P. Green synthesis of a Pt nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of methanol oxidation. Carbon 2011, 49, 1906–1911.

[153]

Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Ma, Y.; Yao, J. N. Facile synthesis of a Ag nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of oxygen reduction. J. Mater. Chem. 2011, 21, 14917–14924.

[154]

Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Yao, J. N.; Keita, B.; Nadjo, L.; Zhi, L. J. Facile synthesis of Au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: An enzyme-free electrochemical biosensor for hydrogen peroxide. Small 2012, 8, 1398–1406.

[155]

Liu, R. J.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Cao, H. B.; Dolbecq, A.; Mialane, P.; Keita, B.; Zhi, L. J. Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 11961–11969.

[156]

Beni, F. A.; Gholami, A.; Ayati, A.; Shahrak, M. N.; Sillanpää, M. UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation. Microporous Mesoporous Mater. 2020, 303, 110275.

[157]

Guo, W. W.; Lv, H. J.; Chen, Z. Y.; Sullivan, K. P.; Lauinger, S. M.; Chi, Y. N.; Sumliner, J. M.; Lian, T. Q.; Hill, C. L. Self-assembly of polyoxometalates, Pt nanoparticles and metal-organic frameworks into a hybrid material for synergistic hydrogen evolution. J. Mater. Chem. A 2016, 4, 5952–5957.

[158]

Cui, C. J.; Shi, D. Y.; Nie, Z. H.; Song, L. B.; Ren, A. H.; Liu, C. S. A novel Ag(I)-containing polyoxometalate-based MOF for visible-light-driven water oxidation. J. Cluster Sci. 2020, 31, 983–988.

[159]

Liu, S. M.; Zhang, Z.; Li, X. H.; Jia, H. J.; Ren, M. W.; Liu, S. X. Ti-substituted Keggin-type polyoxotungstate as proton and electron reservoir encaged into metal-organic framework for carbon dioxidep photoreduction. Adv. Mater. Interfaces 2018, 5, 1801062.

[160]

Liu, J.; Zhang, H. C.; Tang, D.; Zhang, X.; Yan, L. K.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light. ChemCatChem 2014, 6, 2634–2641.

[161]

Din, M. A. U.; Idrees, M.; Jamil, S.; Irfan, S.; Nazir, G.; Mudassir, M. A.; Saleem, M. S.; Batool, S.; Cheng, N. P.; Saidur, R. Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell. J. Energy Chem. 2023, 77, 499–513.

[162]

Qin, C.; Tian, S. J.; Wang, W. J.; Jiang, Z. J.; Jiang, Z. Q. Advances in platinum-based and platinum-free oxygen reduction reaction catalysts for cathodes in direct methanol fuel cells. Front. Chem. 2022, 10, 1073566.

[163]

Pan, D. W.; Chen, J. H.; Tao, W. Y.; Nie, L. H.; Yao, S. Z. Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation. Langmuir 2006, 22, 5872–5876.

[164]

Seo, M. H.; Choi, S. M.; Kim, H. J.; Kim, J. H.; Cho, B. K.; Kim, W. B. A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation. J. Power Sources 2008, 179, 81–86.

[165]

Maiyalagan, T. Silicotungstic acid stabilized Pt-Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation. Int. J. Hydrogen Energy 2009, 34, 2874–2879.

[166]

Shi, H. L.; Wang, R. Y.; Lou, M. R.; Jia, D. Z.; Guo, Y.; Wang, X. C.; Huang, Y. D.; Sun, Z. P.; Wang, T.; Wang, L. X. A novel Pt/pyridine ionic liquid polyoxometalate/rGO tri-component hybrid and its enhanced activities for methanol electrooxidation. Electrochim. Acta 2019, 294, 93–101.

[167]

Rees, N. V.; Compton, R. G. Sustainable energy: A review of formic acid electrochemical fuel cells. J. Solid State Electrochem. 2011, 15, 2095–2100.

[168]

Hossain, S. K. S.; Alwi, M. M. A.; Saleem, J.; Al-Odail, F.; Basu, A.; Hossain, M. M. Recent advances in anode electrocatalysts for direct formic acid fuel cell-II-platinum-based Catalysts. Chem. Record 2022, 22, e202200156.

[169]

Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Yao, J. N.; Zhi, L. J. A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: Enhanced electrocatalytic properties. J. Mater. Chem. 2012, 22, 3319–3322.

[170]

Ji, Y.; Shen, L. P.; Wang, A. X.; Wu, M.; Tang, Y. W.; Chen, Y.; Lu, T. H. Electrocatalytic performance of carbon supported Pd catalyst modified with Keggin type of Sn-substituted polyoxometalatate for formic acid oxidization. J. Power Sources 2014, 260, 82–88.

[171]

Zhang, X. F.; Wang, X. Y.; Le, L. J.; Ma, A.; Lin, S. A Pd/PW12/RGO composite catalyst prepared by electro-codeposition for formic acid electro-oxidation. J. Electrochem. Soc. 2016, 163, F71–F78.

[172]

Lou, M. R.; Wang, R. Y.; Yang, L. L.; Jia, D. Z.; Sun, Z. P.; Wang, L. X.; Guo, Y.; Wang, X. C.; Zhang, J.; Shi, H. L. Ionic liquid polyoxometalate-enhanced Pd/N, P-codoped coal-based carbon fiber catalysts for formic acid electrooxidation. Appl. Surface Sci. 2020, 516, 146137.

[173]

Du, Q. X.; Gong, Y. M.; Khan, M. A.; Ye, D. X.; Fang, J. H.; Zhao, H. B.; Zhang, J. J. Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries. Green Energy Environ. 2022, 7, 16–34.

[174]

Xu, H. D.; Yang, J.; Ge, R. Y.; Zhang, J. J.; Li, Y.; Zhu, M. Y.; Dai, L. M.; Li, S. A.; Li, W. X. Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis. J. Energy Chem. 2022, 71, 234–265.

[175]

Li, X. L.; Lei, H. T.; Xie, L. S.; Wang, N.; Zhang, W.; Cao, R. Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions. Acc. Chem. Res. 2022, 55, 878–892.

[176]

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

[177]

Erikson, H.; Sarapuu, A.; Tammeveski, K. Oxygen reduction reaction on silver catalysts in alkaline media: A minireview. ChemElectroChem 2019, 6, 73–86.

[178]

Qaseem, A.; Chen, F. Y.; Wu, X. Q.; Johnston, R. L. Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media. Catal. Sci. Technol. 2016, 6, 3317–3340.

[179]

Xie, X. H.; Wei, M. X.; Du, L.; Nie, Y.; Qi, X. Q.; Shao, Y. Y.; Wei, Z. D. Enhancement in kinetics of the oxygen reduction on a silver catalyst by introduction of interlaces and defect-rich facets. J. Mater. Chem. A 2017, 5, 15390–15394.

[180]

Lemke, A. J.; O'Toole, A. W.; Phillips, R. S.; Eisenbraun, E. T. The effect of high anionomer loading with silver nanowire catalysts on the oxygen reduction reaction in alkaline environment. J. Power Sources 2014, 256, 319–323.

[181]

Zeng, L.; Zhao, T. S.; An, L. A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells. J. Mater. Chem. A 2015, 3, 1410–1416.

[182]

Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors 2023, 13, 40.

[183]

Dos Santos, M. B.; Rodriguez-Lorenzo, L.; Queirós, R.; Espiña, B. Fundamentals of biosensors and detection methods. Adv. Exp. Med. Biol. 2022, 1379, 3–29.

[184]

Wang, Y. H.; Huang, K. J.; Wu, X. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. Biosens. Bioelectron. 2017, 97, 305–316.

[185]

Liu, C. S.; Li, J. J.; Pang, H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 2020, 410, 213222.

[186]

Thatikayala, D.; Ponnamma, D.; Sadasivuni, K. K.; Cabibihan, J. J.; Al-Ali, A. K.; Malik, R. A.; Min, B. Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2. Biosensors 2020, 10, 151.

[187]

Riaz, M. A.; Chen, Y. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: A review of design strategies. Nanoscale Horiz. 2022, 7, 463–479.

[188]

Ertan, B.; Eren, T.; Ermiş, İ.; Saral, H.; Atar, N.; Yola, M. L. Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid Interface Sci. 2016, 470, 14–21.

[189]

Zhang, X. X.; Bao, Y. Y.; Bai, Y. F.; Chen, Z. Z.; Li, J.; Feng, F. In situ electrochemical reduction assisted assembly of a graphene-gold nanoparticles@polyoxometalate nanocomposite film and its high response current for detection of hydrogen peroxide. Electrochim. Acta 2019, 300, 380–388.

[190]

Guo, S. Y.; Xu, L.; Xu, B. B.; Sun, Z. X.; Wang, L. H. A ternary nanocomposite electrode of polyoxometalate/carbon nanotubes/gold nanoparticles for electrochemical detection of hydrogen peroxide. Analyst 2015, 140, 820–826.

[191]

Atar, N.; Yola, M. L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surface Sci. 2016, 362, 315–322.

[192]

Palilis, L. C.; Vasilopoulou, M.; Georgiadou, D. G.; Argitis, P. A water soluble inorganic molecular oxide as a novel efficient electron injection layer for hybrid light-emitting diodes (HyLEDs). Org. Electron. 2010, 11, 887–894.

[193]

Wang, H.; Yang, Y.; Zhang, Y. Z.; Wang, S. M.; Tan, Z. A.; Yan, S. K.; Wang, L. X.; Hou, J. H.; Xu, B. W. P-π conjugated polyelectrolytes toward universal electrode interlayer materials for diverse optoelectronic devices. Adv. Funct. Mater. 2023, 33, 2213914.

[194]

Zhou, Y.; Lu, Q. C.; Liu, Q. D.; Yang, H. Z.; Liu, J. L.; Zhuang, J.; Shi, W. X.; Wang, X. Architecting hybrid donor-acceptor dendritic nanosheets based on polyoxometalate and porphyrin for high-yield solar water purification. Adv. Funct. Mater. 2022, 32, 2112159.

[195]

Misra, A.; Zambrzycki, C.; Kloker, G.; Kotyrba, A.; Anjass, M. H.; Castillo, I. F.; Mitchell, S. G.; Guttel, R.; Streb, C. Water purification and microplastics removal using magnetic polyoxometalate-supported ionic liquid phases (magPOM-SILPs). Angew. Chem., Int. Ed. 2020, 59, 1601–1605.

[196]

Wang, P. S.; Chishti, A. N.; Chen, P.; Lv, Z. X.; Tan, Y. Y.; Zhang, H. Z.; Zha, J. J.; Ma, Z. Y.; Ni, L. B.; Zhang, L. N. et al. A Keggin-type polyoxomolybdate-based crystalline material formed by hydrothermal transformation: Photo/electro-catalytic properties and mechanism study. CrystEngComm 2022, 24, 8134–8140.

[197]

Palacios-Corella, M.; Ghosh, K.; Redondo, E.; Pumera, M. Polyoxometalate-enhanced 3D-printed supercapacitors. Chem. Sus. Chem. 2022, 15, e202201490.

[198]

Ji, Y. C.; Ma, Y.; Ma, Y. J.; Asenbauer, J.; Passerini, S.; Streb, C. Water decontamination by polyoxometalate-functionalized 3D-printed hierarchical porous devices. Chem. Commun. 2018, 54, 3018–3021.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 July 2023
Revised: 14 September 2023
Accepted: 26 September 2023
Published: 30 September 2023
Issue date: October 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 22178361 and 22378402), the International Partnership Project of Chinese Academy of Sciences (No. 039GJHZ2022029GC), the Deutsche Forschungsgemeinschaft DFG (TRR 234 “CataLight”, grant no: 364549901) and the European Research Council ERC (project “SupraVox”, grant no: 101002212). R. J. L. acknowledges the Alexander-von-Humboldt-Foundation for a postdoctoral fellowship.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return