Journal Home > Volume 2 , Issue 3

All-solid-state batteries are promising candidates for the future generation of energy storage materials. An ideal solid-state electrolyte should have the advantages of excellent compatibility with electrodes and decent ionic conductivity. Nevertheless, the inherent low ionic conductivity of polyethylene oxide (PEO)-based electrolytes leads to low capacity, which significantly limits their wide commercial application. In this study, Dawson-type Li6P2Mo18O62 (LPM) or Li6P2W18O62 (LPW) was selected as lithium salt, combined with ionic liquids (ILs) with ether oxygen chains, and incorporated into a polymer matrix blended with PEO and polyvinylidene fluoride as fillers. A polymer electrolyte film with a smooth surface and uniform filler distribution was prepared using a mechanical co-blending method. The challenge of polyoxometalates as ion-conducting materials is attributed to the strong binding ability of their anion clusters to cations. One prominent benefit of this study is that the dissociation of Li+ from LPM or LPW is facilitated by ILs and relies on the ether oxygen chains in ILs for transport, yielding composites with favorable conduction properties. This study demonstrates the vast potential of polyoxometalates in the field of ionic conductivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ionic liquid-mediated PEO-based solid-state electrolyte membrane modified with Dawson-type polyoxometalates

Show Author's information Qianqian Liu§Yunzuo Cui§Lijie Zhu§Dongming ChengChen WangSiqi LuBo LiXinyu ChenHong-Ying Zang ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

Qian-Qian Liu, Yunzuo Cui, and Li-Jie Zhu contributed equally to this work.

Abstract

All-solid-state batteries are promising candidates for the future generation of energy storage materials. An ideal solid-state electrolyte should have the advantages of excellent compatibility with electrodes and decent ionic conductivity. Nevertheless, the inherent low ionic conductivity of polyethylene oxide (PEO)-based electrolytes leads to low capacity, which significantly limits their wide commercial application. In this study, Dawson-type Li6P2Mo18O62 (LPM) or Li6P2W18O62 (LPW) was selected as lithium salt, combined with ionic liquids (ILs) with ether oxygen chains, and incorporated into a polymer matrix blended with PEO and polyvinylidene fluoride as fillers. A polymer electrolyte film with a smooth surface and uniform filler distribution was prepared using a mechanical co-blending method. The challenge of polyoxometalates as ion-conducting materials is attributed to the strong binding ability of their anion clusters to cations. One prominent benefit of this study is that the dissociation of Li+ from LPM or LPW is facilitated by ILs and relies on the ether oxygen chains in ILs for transport, yielding composites with favorable conduction properties. This study demonstrates the vast potential of polyoxometalates in the field of ionic conductivity.

Keywords: ionic liquids, solid-state electrolyte, polyoxometalates, ion conduction

References(31)

[1]

Ma, M. M.; Zhang, M. H.; Jiang, B. T.; Du, Y.; Hu, B. C.; Sun, C. G. A review of all-solid-state electrolytes for lithium batteries: High-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces. Mater. Chem. Front. 2023, 7, 1268–1297.

[2]

Xing, F. F.; Su, F.; Qin, J. Q.; Wen, P. C.; Li, Y. J.; Zhang, L. Z.; Ma, J. X.; Zheng, S. H.; Guo, X.; Wu, Z. S. 2D VOPO4 pseudocapacitive ultrafast-charging cathode with multi-electron chemistry for high-energy and high-power solid-state lithium metal batteries. Adv. Energy Mater. 2023, 13, 2204015.

[3]

Yang, Y. X.; Dong, R. G.; Cheng, H.; Wang, L. L.; Tu, J. B.; Zhang, S. C.; Zhao, S. H.; Zhang, B.; Pan, H. G.; Lu, Y. Y. 2D layered materials for fast-charging lithium-ion battery anodes. Small 2023, 19, 2301574.

[4]

Deng, X. D.; Li, J. L.; Lai, P. B.; Kuang, S. L.; Liu, J. X.; Dai, P. P.; Hua, H. M.; Dong, P.; Zhang, Y. J.; Yang, Y. et al. Tailored interface composition improves the integrity of electrode/electrolyte interphases for high-voltage Ni-rich lithium metal batteries in a sulfolane-based electrolyte. Chem. Eng. J. 2023, 465, 142907

[5]

Liu, Y. X.; Wang, S. Q.; Jiang, Z. Y.; Kong, W. H.; Han, Q. Y.; Ding, L. X.; Wang, H. H. Multifunctional asymmetric electrolyte membrane encouraging durable lithium-metal batteries in wide temperature variations. J. Membr. Sci. 2023, 677, 121636.

[6]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[7]

Li, Z. Y.; Jiang, X. P.; Lu, G. J.; Deng, T. T.; Wang, R. H.; Wei, J.; Zheng, W. K.; Yang, Z. G.; Tang, D. S.; Zhao, Q. N. et al. Composite lithium with high ionic conducting Li3Bi alloy enabled high-performance garnet-type solid-state lithium batteries. Chem. Eng. J. 2023, 465, 142895.

[8]

Liu, Y. X.; Hu, R. Z.; Zhang, D. C.; Liu, J. W.; Liu, F.; Cui, J.; Lin, Z. P.; Wu, J. S.; Zhu, M. Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 2021, 33, 2004711.

[9]

Deiner, L. J.; Bezerra, C. A. G.; Howell, T. G.; Powell, A. S. Digital printing of solid-state lithium-ion batteries. Adv. Eng. Mater. 2019, 21, 1900737.

[10]

Liu, Y. Y.; Han, L. F.; Liao, C.; Yu, H.; Kan, Y. C.; Hu, Y. Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chem. Eng. J. 2023, 468, 143222.

[11]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[12]

Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

[13]

Chen, L.; Qiu, X. M.; Bai, Z. M.; Fan, L. Z. Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 2021, 52, 210–217.

[14]

Lu, W. Z.; Xue, M. Z.; Zhang, C. M. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries. Energy Stor. Mater. 2021, 39, 108–129.

[15]

Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 2023, 35, 2110423.

[16]

Liang, J. N.; Luo, J.; Sun, Q.; Yang, X. F.; Li, R. Y.; Sun, X. L. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Stor. Mater. 2019, 21, 308–334.

[17]

Pan, J.; Zhao, P.; Wang, N. N.; Huang, F. Q.; Dou, S. X. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 2022, 15, 2753–2775.

[18]

Tao, C.; Gao, M. H.; Yin, B. H.; Li, B.; Huang, Y. P.; Xu, G. W.; Bao, J. J. A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta 2017, 257, 31–39.

[19]

Xiao, Z. L.; Long, T. Y.; Song, L. B.; Zheng, Y. H.; Wang, C. Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics 2022, 28, 15–26.

[20]

Zhao, Q.; Wu, X. L.; Li, S. H.; Zheng, Q. T.; Jiang, S.; Xu, Y.; He, B.; Ma, L.; Luo, Y. T.; Wang, Y. J. et al. Boosting thermal and mechanical properties: Achieving high-safety separator chemically bonded with nano TiN particles for high performance lithium-ion batteries. Small 2023, 19, 2300378.

[21]

Choudhury, S.; Stalin, S.; Deng, Y.; Archer, L. A. Soft colloidal glasses as solid-state electrolytes. Chem. Mater. 2018, 30, 5996–6004.

[22]

Wu, M. J.; Liu, D.; Qu, D. Y.; Xie, Z. Z.; Li, J. S.; Lei, J. H.; Tang, H. L. 3D Coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 52652–52659.

[23]

Li, B.; Wu, L. X. Perspective of polyoxometalate complexes on flexible assembly and integrated potentials. Polyoxometalates 2023, 2, 9140016.

[24]

Guo, L.; He, L.; Zhuang, Q. H.; Li, B. L.; Wang, C. F.; Lv, Y. F.; Chu, J. F.; Song, Y. F. Recent advances in confining polyoxometalates and the applications. Small 2023, 19, 2207315.

[25]

Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.

[26]

Wu, P. X.; Lai, R. D.; Ge, R.; Sun, C.; Wang, G. Q.; Li, X. X.; Zheng, S. T. A tellurium-substituted heteropolyniobate with unique π-π stacking and ionic conduction property. Inorg. Chem. 2021, 60, 6162–6166.

[27]

Martinetto, Y.; Pégot, B.; Roch-Marchal, C.; Cottyn-Boitte, B.; Floquet, S. Designing functional polyoxometalate-based ionic liquid crystals and ionic liquids. Eur. J. Inorg. Chem. 2020, 2020, 228–247.

[28]

Wu, K.; Miao, X. Y.; Zhao, H. R.; Liu, S.; Fei, T.; Zhang, T. Selective encapsulation of ionic liquids in UiO-66-NH2 nanopores for enhanced humidity sensing. ACS Appl. Nano Mater. 2023, 6, 9050–9058.

[29]

Nordness, O.; Brennecke, J. F. Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 2020, 120, 12873–12902.

[30]

Arendt, E.; Zehri, S.; Eloy, P.; Gaigneaux, E. M. Supporting the Dawson (NH4)6P2Mo18O62 heteropoly compound: Controlling its molecular behaviour to enhance its catalytic activity in the propene oxidation. Eur. J. Inorg. Chem. 2012, 2012, 2792–2801.

[31]

Wang, J. Y.; Chen, Y.; Zhang, L. Z.; Liu, C.; Hu, Y. Q. Thermodynamic properties of PEG-based functionalized imidazolium toluenesulfonate ionic liquids. J. Mol. Liq. 2015, 204, 39–43.

File
0036_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 May 2023
Revised: 16 August 2023
Accepted: 16 September 2023
Published: 28 September 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22302102, 21871042, 21471028, and 22073094), the Fundamental Research Funds for the Central Universities-Excellent Youth Team Program (No. 2412023YQ001), Natural Science Foundation of Jilin Province (No. 20200201083JC), and Natural Science Foundation of Department of education of Jilin Province (No. JJKH20201169KJ).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return