Journal Home > Volume 2 , Issue 3

An acentric hexa-Ti-oxo-cluster-added trimeric phosphotungstate, [H2N(CH3)2]3H12[Ti6O6(A-1,2-PW10O37)3]∙12 H2O (1), was synthesized by reacting trivacant polyoxometalate (POM) fragments with Ti4+ ions under hydrothermal conditions and characterized via single-crystal/powder X-ray diffraction, solid UV–vis and IR spectroscopies, and thermogravimetric analysis. The polyoxoanion of 1 is constituted by three Ti2O3(A-1,2-PW10O37) subunits linked through Ti–O–Ti bonds, forming a ring-shaped configuration. Furthermore, 1 exhibits a second-harmonic generation response about 0.6 times that of KH2PO4, which paves the way toward the development of Ti-added POMs in the field of nonlinear optical materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis, structure, and characteristics of a hexa-Ti-oxo-cluster-added Keggin-type polyoxometalate

Show Author's information Yu WangHai-Lou LiGuo-Yu Yang( )
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

Abstract

An acentric hexa-Ti-oxo-cluster-added trimeric phosphotungstate, [H2N(CH3)2]3H12[Ti6O6(A-1,2-PW10O37)3]∙12 H2O (1), was synthesized by reacting trivacant polyoxometalate (POM) fragments with Ti4+ ions under hydrothermal conditions and characterized via single-crystal/powder X-ray diffraction, solid UV–vis and IR spectroscopies, and thermogravimetric analysis. The polyoxoanion of 1 is constituted by three Ti2O3(A-1,2-PW10O37) subunits linked through Ti–O–Ti bonds, forming a ring-shaped configuration. Furthermore, 1 exhibits a second-harmonic generation response about 0.6 times that of KH2PO4, which paves the way toward the development of Ti-added POMs in the field of nonlinear optical materials.

Keywords: hydrothermal synthesis, nonlinear optics, Ti-oxo cluster, addition reaction

References(53)

[1]

Zhang, P. Y.; Wang, Y.; Yao, L. Y.; Yang, G. Y. Hepta-Zr-incorporated polyoxometalate assembly. Inorg. Chem. 2022, 61, 10410–10416.

[2]

Zhu, Z. K.; Lin, Y. Y.; Yu, H.; Li, X. X.; Zheng, S. T. Inorganic-organic hybrid polyoxoniobates: Polyoxoniobate metal complex cage and cage framework. Angew. Chem., Int. Ed. 2019, 58, 16864–16868.

[3]

Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

[4]

Wang, Z. W.; Yang, G. Y. A {Co9}-added polyoxometalate for efficient visible-light-driven hydrogen evolution. Molecules 2023, 28, 664.

[5]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[6]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[7]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[8]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[9]

Li, H. L.; Lian, C.; Yang, G. Y. A Zr-added Dawson-type poly(polyoxometalate). Dalton Trans. 2023, 52, 857–861.

[10]

Lian, C.; Li, H. L.; Yang, G. Y. A new 28-Ni-added poly(polyoxometalate) with B atoms: Synthesis, structure and catalysis for Knoevenagel condensation. Sci. China Chem. 2023, 66, 1394–1399.

[11]

Li, H. L.; Lian, C.; Yang, G. Y. A new 4-Ti-added polyoxometalate. Tungsten, in press, DOI: 10.1007/s42864-023-00221-5.

[12]

Li, H. L.; Lian, C.; Yang, G. Y. {Ti12} cluster-added poly(polyoxometalate) containing mixed trivacant Keggin and Dawson fragments. Inorg. Chem. 2023, 62, 9014–9018.

[13]

Chakraborty, B.; Weinstock, I. A. Water-soluble titanium-oxides: Complexes, clusters and nanocrystals. Coord. Chem. Rev. 2019, 382, 85–102.

[14]

Ni, Z. H.; Lv, H. J.; Yang, G. Y. Recent advances of Ti/Zr-substituted polyoxometalates: From structural diversity to functional applications. Molecules 2022, 27, 8799.

[15]

Nomiya, K.; Sakai, Y.; Matsunaga, S. Chemistry of group IV metal ion‐containing polyoxometalates. Eur. J. Inorg. Chem. 2011, 2011, 179–196.

[16]

Li, H. L.; Lian, C.; Yang, G. Y. A ring-shaped 12-Ti-substituted poly(polyoxometalate): Synthesis, structure, and catalytic properties. Sci. China Chem. 2022, 65, 892–897.

[17]

Kortz, U.; Hamzeh, S. S.; Nasser, N. A. Supramolecular structures of titanium(IV)-substituted Wells-Dawson polyoxotungstates. Chem.—Eur. J. 2003, 9, 2945–2952.

[18]

Sakai, Y.; Yoza, K.; Kato, C. N.; Nomiya, K. Tetrameric, trititanium(IV)-substituted polyoxotungstates with an α-Dawson substructure as soluble metal-oxide analogues: Molecular structure of the Giant “tetrapod” [( α-1,2,3-P2W15Ti3O62)4{ μ3-Ti(OH)3}4Cl]45−. Chem.—Eur. J. 2003, 9, 4077–4083.

[19]

Hussain, F.; Bassil, B. S.; Bi, L. H.; Reicke, M.; Kortz, U. Structural control on the nanomolecular scale: Self-assembly of the polyoxotungstate wheel [{ β-Ti2SiW10O39}4]24−. Angew. Chem., Int. Ed. 2004, 43, 3485–3488.

[20]

Li, H. L.; Lian, C.; Yin, D. P.; Jia, Z. Y.; Yang, G. Y. A new hepta-nuclear Ti-oxo-cluster-substituted tungstoantimonate and its catalytic oxidation of thioethers. Cryst. Growth Des. 2019, 19, 376–380.

[21]

Kholdeeva, O. A.; Maksimov, G. M.; Maksimovskaya, R. I.; Kovaleva, L. A.; Fedotov, M. A.; Grigoriev, V. A.; Hill, C. L. A dimeric titanium-containing polyoxometalate. Synthesis, characterization, and catalysis of H2O2-based thioether oxidation. Inorg. Chem. 2000, 39, 3828–3837.

[22]

Hideyuki, M.; Kunihiko, H.; Ikuo, T.; Takeshi, H.; Shoko, Y.; Rie, M.; Nozaki, K. C.; Kenji, N. Novel solid-state 8H+-heteropolyacid. Synthesis and molecular structure of a free-acid form of a Dawson-type sandwich complex, [Ti2{P2W15O54(OH2)2}2]8−. Bull. Chem. Soc. Jpn. 2007, 80, 2161–2169.

[23]

He, J. H.; Wang, X. H.; Chen, Y. G.; Liu, J. F.; Hu, N. H.; Jia, H. Q. Synthesis and crystal structure of the dimeric, Ti-O-Ti bridged hydrid form polyoxoanion [ α-1,2-PW10Ti2O39]210−. Inorg. Chem. Commun. 2002, 5, 796–799.

[24]

Lin, Y.; Weakley, T. J. R.; Rapko, B.; Finke, R. G. Polyoxoanions derived from tungstosilicate A- β-SiW9O3410−: Synthesis, single-crystal structural determination, and solution structural characterization by tungsten-183 NMR and IR of titanotungstosilicate A- β-Si2W18Ti6O7714−. Inorg. Chem. 2002, 32, 5095–5101.

[25]

Matsuki, Y.; Hoshino, T.; Takaku, S.; Matsunaga, S.; Nomiya, K. Synthesis and molecular structure of a water-soluble, dimeric tri-titanium(IV)-substituted Wells-Dawson polyoxometalate containing two bridging (C5Me5)Rh2+ groups. Inorg. Chem. 2015, 54, 11105–11113.

[26]

Al-Kadamany, G.; Bassil, B. S.; Raad, F.; Kortz, U. The oxalato-titanium-containing tungstophosphate(V) dimers, [Ti8(C2O4)8P2W18O76(H2O)4]18− and [Ti6(C2O4)4P4W32O124]20−. J. Clust. Sci. 2014, 25, 867–878.

[27]

Hoshino, T.; Isobe, R.; Kaneko, T.; Matsuki, Y.; Nomiya, K. Synthesis and molecular structure of a novel compound containing a carbonate-bridged hexacalcium cluster cation assembled on a trimeric trititanium (IV)-substituted Wells-Dawson polyoxometalate. Inorg. Chem. 2017, 56, 9585–9593.

[28]

Nsouli, N. H.; Bassil, B. S.; Dickman, M. H.; Kortz, U.; Keita, B.; Nadjo, L. Synthesis and structure of dilacunary decatungstogermanate, [ γ-GeW10O36]8−. Inorg. Chem. 2006, 10, 3858–3860.

[29]

Ren, Y. H.; Liu, S. X.; Cao, R. G.; Zhao, X. Y.; Cao, J. F.; Gao, C. Y. Two trimeric tri-TiIV-substituted Keggin tungstogermanates based on tetrahedral linkers. Inorg. Chem. Commun. 2008, 11, 1320–1322.

[30]

Li, H. L.; Lian, C.; Yang, G. Y. A {Ti6W4}-cluster-substituted polyoxotungstate: Synthesis, structure, and catalytic oxidation properties. Inorg. Chem. 2021, 60, 14622–14628.

[31]
Li, H. L.; Lian, C.; Yang, G. Y. {Ti6}/{Ti10} wheel cluster substituted silicotungstate aggregates. Inorg. Chem. 2021, 60, 16852–16859.
DOI
[32]

Hervé, G.; Teze, A. Study of α- and β-enneatungstosilicates and -germanates. Inorg. Chem. 1976, 16, 2115–2117.

[33]

Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8.

[34]

Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112–122.

[35]

Kurtz, S. K.; Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 8, 3798–3813.

[36]

Zhang, G. Y.; Hou, J.; Li, M. Z.; Tung, C. H.; Wang, Y. F. Counteranion-stabilized titanium(IV) isopolyoxocationic clusters isolated from water. Inorg. Chem. 2016, 55, 4704–4709.

[37]

Kemmitt, T.; Al-Salim, N. I.; Gainsford, G. J. Formation and structural characterisation of an unusual cyclic hexameric oxotitanium complex. 3.0.CO;2-I">Eur. J. Inorg. Chem. 1999, 1999, 1847–1849.

[38]

Baumann, S. O.; Bendova, M.; Fric, H.; Puchberger, M.; Visinescu, C.; Schubert, U. Ketoximate derivatives of titanium alkoxides and partial hydrolysis products thereof. Eur. J. Inorg. Chem. 2009, 2009, 3333–3340.

[39]

Gao, M. Y.; Chen, S. M.; Hu, L. X.; Zhang, L.; Zhang, J. Synthesis and photocatalytic H2 evolution properties of four titanium-oxo-clusters based on a cyclohex-3-ene-1-carboxylate ligand. Dalton Trans. 2017, 46, 10630–10634.

[40]

Narayanam, N.; Fang, W. H.; Chintakrinda, K.; Zhang, L.; Zhang, J. Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chem. Commun. 2017, 53, 8078–8080.

[41]

Lian, C.; Li, H. L.; Yang, G. Y. High-nuclear Ni-substituted poly(polyoxometalate) containing an Anderson-like {Cs7} cluster. Inorg. Chem. 2022, 61, 11335–11341.

[42]
Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy; Interscience Publishers: New York, 1966.
[43]

Wei, Q.; Sun, L.; Zhang. J.; Yang, G. Y. Two deep-ultraviolet nonlinear optical alkaline-earth metal borates based on different types of oxoboron clusters. Dalton Trans. 2017, 46, 7911–7916.

[44]

Knoppe, S.; Häkkinen, H.; Verbiest, T.; Clays, K. Role of donor and acceptor substituents on the nonlinear optical properties of gold nanoclusters. J. Phys. Chem. C 2018, 122, 4019–4028.

[45]

Lacroix, P. G.; Malfant, I.; Lepetit, C. Second-order nonlinear optics in coordination chemistry: An open door towards multi-functional materials and molecular switches. Coord. Chem. Rev. 2016, 308, 381–394.

[46]

Li, X. Y.; Li, J. H.; Cheng, J. W.; Yang, G. Y. Two acentric aluminoborates incorporated d10 cations: Syntheses, structures, and nonlinear optical properties. Inorg. Chem. 2023, 36, 1264–1271.

[47]

Guan, W.; Yang, G. C.; Yan, L. K.; Su, Z. M. Prediction of second-order optical nonlinearity of trisorganotin-substituted β-Keggin Polyoxotungstate. Inorg. Chem. 2006, 45, 7864–7868.

[48]

Ma, T. Y.; Zhang, T.; Zhu, B.; Yan, L. K.; Su, Z. M. Theoretical studies on oxidation-switchable second-order nonlinear optical responses of Metallosalen-Keggin polyoxometalate derivatives. RSC Adv. 2016, 6, 53438–53443.

[49]

Luo, X. M.; Chen, L.; Dong, Y. Y.; Li, J.; Cui, C. H.; Cao, J. P.; Xu, Y. Three new high-nuclear transition-metal-substituted heteropolytungstates: Syntheses, crystal structures, magnetic studies and NLO properties. Dalton Trans. 2018, 47, 9504–9511.

[50]

Wang, Z. W.; Zhao, Q.; Chen, C. A.; Sun, J. J.; Lv, H. J.; Yang, G. Y. Chiral {Ni6PW9} cluster-organic framework: Synthesis, structure, and properties. Inorg. Chem. 2022, 61, 7477–7483.

[51]

Li, F. J.; Hu, X. J.; Sa, R. J.; Niu, L. B. Molecular orbital closed loops analysis of the third-order NLO response of polyanion [M8O26]4− (M = Cr, Mo, W): A TDDFT study. Struct. Chem. 2014, 25, 539–549.

[52]

Bai, Z. Y.; Hu, C. L.; Liu, L. H.; Zhang, L. Z.; Huang, Y. S.; Yuan, F. F.; Lin, Z. B. KMg(H2O)PO4: A deep-ultraviolet transparent nonlinear optical material derived from KTiOPO4. Chem. Mater. 2019, 31, 9540–9545.

[53]

Lei, B. H.; Yang, Z. H.; Yu, H. W.; Cao, C.; Li, Z.; Hu, C.; Poeppelmeier, K. R.; Pan, S. L. Module-guided design scheme for deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2018, 140, 10726–10733.

File
0033_ESM1.pdf (755.4 KB)
0033_ESM2_y1.cif (1.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 July 2023
Revised: 22 August 2023
Accepted: 29 August 2023
Published: 21 September 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. 21831001, 21571016, 91122028, and 20725101).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return