Journal Home > Volume 2 , Issue 3

Two-dimensional (2D) Cu-CP (Cu-CP = [Cu(pca)2∙Hpca]n) (1) with an interpenetrating double-layer structure was prepared using a hydrothermal method based on 4-picolinic acid (Hpca) ligand. Because 3d–4f metal-incorporated polyoxometalate (POM) materials have received increasing attention, the extension of Cu-CP from a 2D to a three-dimensional (3D) structure was achieved by adding H4SiW12O40 and rare earth metal. Three isostructural 3D 3d–4f metal-incorporated POMs were obtained: Cu-Ln-CPs (Cu-Ln-CPs = [Ln2Cu (SiW12O40) (Hpca)4(pca)4(H2O)2]∙(Hpca)2∙(I2)0.5, Ln = Sm (2), Gd (3), La (4)). The applications of these complexes in the fields of fluorescence and electrochemistry were explored. The results showed that the expanded structure of the complexes can realize the fluorescent sensing of Ni2+ and Cr3+ and the electrochemical sensing of nitrite.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structural extension of 2D complexes to 3D complexes and their applications

Show Author's information Wei Liu1Wei Yao1 ( )Baotong Xu1Vladimir P. Fedin2Enjun Gao1 ( )
China-Russian Institute of Engineering Materials Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

Abstract

Two-dimensional (2D) Cu-CP (Cu-CP = [Cu(pca)2∙Hpca]n) (1) with an interpenetrating double-layer structure was prepared using a hydrothermal method based on 4-picolinic acid (Hpca) ligand. Because 3d–4f metal-incorporated polyoxometalate (POM) materials have received increasing attention, the extension of Cu-CP from a 2D to a three-dimensional (3D) structure was achieved by adding H4SiW12O40 and rare earth metal. Three isostructural 3D 3d–4f metal-incorporated POMs were obtained: Cu-Ln-CPs (Cu-Ln-CPs = [Ln2Cu (SiW12O40) (Hpca)4(pca)4(H2O)2]∙(Hpca)2∙(I2)0.5, Ln = Sm (2), Gd (3), La (4)). The applications of these complexes in the fields of fluorescence and electrochemistry were explored. The results showed that the expanded structure of the complexes can realize the fluorescent sensing of Ni2+ and Cr3+ and the electrochemical sensing of nitrite.

Keywords: fluorescence, electrochemistry, polyoxometalates, structure extension, 3d–4f heterobimetallic

References(60)

[1]

Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.

[2]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[3]

Gumerova, N. I.; Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.

[4]

Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.

[5]

Li, B.; Wu, L. X. Perspective of polyoxometalate complexes on flexible assembly and integrated potentials. Polyoxometalates 2023, 2, 9140016.

[6]

Cheng, M. Y.; Liu, Y. F.; Du, W. X.; Shi, J. W.; Li, J. H.; Wang, H. Y.; Li, K.; Yang, G. P.; Zhang, D. D. Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its high‐efficiency catalysis for pyrazoles. Chin. Chem. Lett. 2022, 33, 3899–3902.

[7]

Venu, A. C.; Din, R. N.; Rudszuck, T.; Picchetti, P.; Chakraborty, P.; Powell, A. K.; Krämer, S.; Guthausen, G.; Ibrahim, M. NMR relaxivities of paramagnetic lanthanide-containing polyoxometalates. Molecules 2021, 26, 7481.

[8]

Kortz, U.; Müller, A.; Van Slageren, J.; Schnack, J.; Dalal, N. S.; Dressel, M. Polyoxometalates: Fascinating structures, unique magnetic properties. Coord. Chem. Rev. 2009, 253, 2315–2327.

[9]

Li, H.; Pan, H.; Fan, Y. H.; Bai, Y.; Dang, D. B. Syntheses, crystal structures, and properties of four polyoxometalate-based metal-organic frameworks based on Ag(I) and 4,4’-dipyridine-N,N’-dioxide. Polyoxometalates 2022, 1, 9140007.

[10]

Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.

[11]

Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

[12]

Ben M’Barek, Y.; Rosser, T.; Sum, J.; Blanchard, S.; Volatron, F.; Izzet, G.; Salles, R.; Fize, J.; Koepf, M.; Chavarot-Kerlidou, M. et al. Dye-sensitized photocathodes: Boosting photoelectrochemical performances with polyoxometalate electron transfer mediators. ACS Appl. Energy Mater. 2019, 3, 163–169.

[13]

Liu, Q. Q.; Lu, J. J.; Lin, H. Y.; Wang, X. L.; Chang, Z. H.; Chen, Y. Z.; Zhang, Y. C. Polyoxometalate-based metal-organic complexes constructed from a new bis-pyrimidine-amide ligand with high capacitance performance and selectivity for the detection of Cr (VI). Chin. Chem. Lett. 2022, 33, 4389–4394.

[14]

Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks. ACS Catal. 2019, 9, 10174–10191.

[15]

Das, V.; Kaushik, R.; Hussain, F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications. Coord. Chem. Rev. 2020, 413, 213271.

[16]

Wang, Y. F.; Qin, Z. J.; Tian, Z. F.; Bai, Y.; Li, Y. M.; Zhang, Y. W.; Dang, D. B. A series of germanotungstate-based 3d-4f heterometallic compounds with visible-light induced photocatalytic, electrochemical and magnetic properties. J. Alloys Compd. 2019, 784, 961–969.

[17]

Wang, Y. X.; Lu, Y.; Zhang, W. S.; Dang, T. Y.; Yang, Y. L.; Bai, X.; Liu, S. X. Construction of hydrogel composites with superior proton conduction and flexibility using a new POM-based inorganic-organic hybrid. Polyoxometalates 2022, 1, 9140005.

[18]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[19]

Liu, N. M.; Guo, N. D.; Zhang, Z. B.; Li, H. J.; Xu, H.; Zhang, X.; Luo, X.; Zhou, F. Q. Dual-mode on-to-off modulation of plasmon-induced transparency and coupling effect in patterned graphene-based terahertz metasurface. Nanoscale Res. Lett. 2020, 15, 1.

[20]

Sato, R.; Suzuki, K.; Minato, T.; Yamaguchi, K.; Mizuno, N. Sequential synthesis of 3d-3d’-4f heterometallic heptanuclear clusters in between lacunary polyoxometalates. Inorg. Chem. 2016, 55, 2023–2029.

[21]

Li, S. R.; Wang, H. Y.; Su, H. F.; Chen, H. J.; Du, M. H.; Long, L. S.; Kong, X. J.; Zheng, L. S. A giant 3d-4f polyoxometalate super-tetrahedron with high proton conductivity. Small Methods 2021, 5, 2000777.

[22]

Han, Q.; Li, Z.; Liang, X. M.; Ding, Y.; Zheng, S. T. Synthesis of a 6-nm-long transition-metal-rare-earth-containing polyoxometalate. Inorg. Chem. 2019, 58, 12534–12537.

[23]

Zhang, X. X.; Xia, Z. C.; Deng, H.; Huang, S.; Yang, F.; Song, Y. J.; Jiang, D. Q.; Xiao, G. L. Effects of the interplay between R 4f and Fe 3d on magneto-electric behavior and high field magnetization in RFe2O4 (R = Yb, Tm). J. Magn. Magn. Mater. 2020, 510, 166937.

[24]

Gu, Y. N.; Yu, H.; Lin, L. D.; Wu, Y. L.; Li, Z.; Pan, W. Y.; He, J.; Chen, L.; Li, Q.; Li, X. X. Two rare Cr-Ln (Ln = Dy, Tb) heterometallic cluster substituted polyoxometalates featuring hexameric aggregates: Hydrothermal syntheses, crystal structures and magnetic studies. New J. Chem. 2019, 43, 3011–3016.

[25]

Sun, P. F.; Zhang, X. N.; Fan, C. H.; Chen, W. P.; Zheng, Y. Tricine-supported polyoxo(alkoxo)lanthanide cluster {Ln15} (Ln = Eu, Gd, Tb) with magnetic refrigerant and fluorescent properties. Polyoxometalates 2023, 2, 9140026.

[26]

Takeda, H.; Kobayashi, A.; Tsuge, K. Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord. Chem. Rev. 2022, 470, 214700.

[27]

Comba, P.; Hauser, A.; Kerscher, M.; Pritzkow, H. Bond-stretch isomerism: Trapped isomeric structures of hexacoordinate copper(II) bispidine chromophores along a Jahn-teller active vibrational coordinate. Angew. Chem., Int. Ed. 2003, 42, 4536–4540.

[28]

Mohamad, A. D. M.; El-Shrkawy, E. R.; Al-Hussein, M. F. I.; Adam, M. S. S. Water-soluble Cu(II)-complexes of Schiff base amino acid derivatives as biological reagents and sufficient catalysts for oxidation reactions. J. Taiwan Inst. Chem. Eng. 2020, 113, 27–45.

[29]

Chiyindiko, E.; Langner, E. H.G.; Conradie, J. Electrochemical behaviour of copper(II) complexes containing 2-hydroxyphenones. Electrochim. Acta 2022, 424, 140629.

[30]

Hendi, Z.; Jamali, S.; Mahmoudi, S.; Samouei, H.; Nayeri, S.; Chabok, S. M. J.; Jamshidi, Z. Metal-organic cubane cage with trimethylplatinum(IV) vertices. Inorg. Chem. 2022, 61, 15–19.

[31]

Liu, Y.; Lu, M. Q.; Yin, Y. R.; Zhou, J.; Qu, G. Z.; Zhang, Y.; Guo, H.; Tang, S. F.; Liu, C.; Wang, T. C. Self-catalytic Fenton-like reactions stimulated synergistic Cu-EDTA decomplexation and Cu recovery by glow plasma electrolysis. Chem. Eng. J. 2022, 433, 134601.

[32]

Buvailo, H. I.; Makhankova, V. G.; Kokozay, V. N.; Babaryk, A. A.; Omelchenko, I. V.; Shishkina, S. V.; Bieńko, D. C.; Jezierska, J.; Bieńko, A. Hybrid Cu-containing compounds based on lacunary strandberg anions: Synthesis under mild conditions, crystal structure, and magnetic properties. Inorg. Chem. 2022, 61, 5701–5714.

[33]

Brown, C. M.; Li, C. F.; Carta, V.; Li, W. B.; Xu, Z.; Stroppa, P. H. F.; Samuel, I. D. W.; Zysman-Colman, E.; Wolf, M. O. Influence of sulfur oxidation state and substituents on sulfur-bridged luminescent copper(I) complexes showing thermally activated delayed fluorescence. Inorg. Chem. 2019, 58, 7156–7168.

[34]

Zheng, H. Y.; Xu, N.; Hou, B. S.; Zhao, X.; Dong, M.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Bimetallic metal-organic framework-derived graphitic carbon-coated small Co/VN nanoparticles as advanced trifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2021, 13, 2462–2471.

[35]

Liu, B. L.; Hu, B.; Du, J.; Cheng, D. M.; Zang, H. Y.; Ge, X.; Tan, H. Q.; Wang, Y. H.; Duan, X. Z.; Jin, Z. et al. Precise molecular-level modification of nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew. Chem., Int. Ed. 2021, 60, 6076–6085.

[36]

Yu, L.; Gao, Z. H.; Xu, Q.; Pan, X. Y.; Xiao, Y. X. A selective dual-response biosensor for tyrosinase monophenolase activity based on lanthanide metal-organic frameworks assisted boric acid-levodopa polymer dots. Biosens. Bioelectron. 2022, 210, 114320.

[37]

Hu, X. L.; Guo, Y.; Wang, T.; Liu, C.; Yang, Y. K.; Fang, G. Z. A selectivity-enhanced ratiometric fluorescence imprinted sensor based on synergistic effect of covalent and non-covalent recognition units for ultrasensitive detection of ribavirin. J. Hazard Mater. 2022, 421, 126748.

[38]

Tubau, À.; Rodríguez, L.; Lázaro, A.; Vicente, R.; Font-Bardía, M. Improving the emission quantum yield in dinuclear Eu(III) and Tb(III) complexes with 2-fluorobenzoate. New J. Chem. 2021, 45, 22208–22215.

[39]

Kim, Y. J.; Yang, C. H. Electret formation in transition metal oxides by electrochemical amorphization. NPG Asia Mater. 2020, 12, 1.

[40]

Li, Y.; Guo, L. N.; Yang, B. W. Enhanced up-conversion luminescence and temperature-sensing of GdVO4:Ln3+ with dual-wavelength excitation. Dalton Trans. 2021, 50, 2112–2122.

[41]

Baldoví, J. J.; Duan, Y.; Bustos, C.; Cardona-Serra, S.; Gouzerh, P.; Villanneau, R.; Gontard, G.; Clemente-Juan, J. M.; Gaita-Ariño, A.; Giménez-Saiz, C. et al. Single ion magnets based on lanthanoid polyoxomolybdate complexes. Dalton Trans. 2016, 45, 16653–16660.

[42]

Li, J.; Shang, S. X.; Lin, Z. G.; Yao, Z. S.; Zhen, N.; Li, Z.; Chi, Y. N.; Hu, C. W. Assembly of lanthanide-containing tungstotellurates(VI): Syntheses, structures, and catalytic properties. Front. Chem. 2020, 8, 598961.

[43]

Latturner, S. E.; Chan, J. Y. Emerging investigators in solid-state inorganic chemistry. Inorg. Chem. 2019, 58, 4–7.

[44]

Zhao, W. F.; Zou, C.; Shi, L. X.; Yu, J. C.; Qian, G. D.; Wu, C. D. Synthesis of diamondoid lanthanide-polyoxometalate solids as tunable photoluminescent materials. Dalton Trans. 2012, 41, 10091–10096.

[45]

Dong, M.; Li, W.; Zhou, J.; You, S. Q.; Sun, C. Y.; Yao, X. H.; Qin, C.; Wang, X. L.; Su, Z. M. Microenvironment modulation of imine-based covalent organic frameworks for CO2 photoreduction. Chin. J Chem. 2022, 40, 2678–2684.

[46]

Liu, B. L.; Cheng, D. M.; Zhu, H. T.; Du, J.; Li, K.; Zang, H. Y.; Tan, H. Q.; Wang, Y. H.; Xing, W.; Li, Y. G. A bismuth oxide/graphene oxide nanocomposite membrane showing super proton conductivity and low methanol permeability. Chem. Sci. 2019, 10, 556–563.

[47]
Sheldrick, G. M. SHELXS-2014, Program for crystal structure refinement; Department of Structural Chemistry, Georg-August University of Göttingen: Göttingen, Germany, 2014.
[48]

Wu, H. L.; Peng, H. P.; Zhang, Y. H.; Wang, F.; Zhang, H.; Wang, C. P.; Yang, Z. H. Synthesis, crystal structure, electrochemistry and antioxidative activity of copper(II), manganese(II) and nickel(II) complexes containing bis( N-ethylbenzimidazol-2-ylmethyl)aniline. Appl. Organomet. Chem. 2015, 29, 443–449.

[49]

Wang, K.; Luo, X. M.; Chen, P.; Liu, Y. Q.; Liu, B.; Jiang, H. J.; Ju, Y. C. Two rare-earth complexes (Sm, La) based on a carbon-bridged Bis(phenolate), synthesis and crystal structures. Russ. J. Coord. Chem. 2019, 45, 238–243.

[50]

Liu, W.; Cong, Z. Z.; Liu, G. C.; Gao, G. X.; Zhang, Y.; Wu, S. Y.; Gao, E. J.; Zhu, M. C. A self-calibrating sensor toward fluorescence turn-on detection of DMSO and nicosulfuron. Inorg. Chim. Acta 2021, 527, 120592.

[51]

Firouzjaei, M. D.; Afkhami, F. A.; Esfahani, M. R.; Turner, C. H.; Nejati, S. Experimental and molecular dynamics study on dye removal from water by a graphene oxide-copper-metal organic framework nanocomposite. J. Water Proc. Eng. 2020, 34, 101180.

[52]

Pang, H. J.; Zhang, C. J.; Chen, Y. G.; Hu, M. X.; Li, J. Assembly of a supramolecular architecture based on Keggin POMs and lanthanide coordination cations. J. Clust. Sci. 2008, 19, 631–640.

[53]

Zhang, Z. M.; Yin, F. J.; Wang, L. P.; Zhao, H. Syntheses, crystal structures and catalytic properties of copper(II) and cobalt(II) complexes containing 5,6-dimethylbenzimidazole. Chin. J. Struct. Chem .2014, 33, 687–694.

[54]

Tanuhadi, E.; Gumerova, N. I.; Prado-Roller, A.; Galanski, M. S.; Čipčić-Paljetak, H.; Verbanac, D.; Rompel, A. Aluminum-substituted Keggin germanotungstate [HAl(H2O)GeW11O39]4–: Synthesis, characterization, and antibacterial activity. Inorg. Chem. 2021, 60, 28–31.

[55]

Hu, H. F.; Pang, J. J.; Gong, P. J.; Chen, L. J.; Zhao, J. W. Organic-inorganic two-dimensional hybrid networks constructed from pyridine-4-carboxylate-decorated organotin-lanthanide heterometallic antimotungstates. Inorg. Chem. 2020, 59, 11287–11297.

[56]

Tan, J. J.; He, S. B.; Yan, S. H.; Li, Y. N.; Li, H.; Zhang, H.; Zhao, L.; Li, L. J. Exogenous EDDS modifies copper-induced various toxic responses in rice. Protoplasma 2014, 251, 1213–1221.

[57]

Liu, W.; Liu, G. C.; Gao, G. X.; Gao, Z.; Zhang, Y.; Wu, S. Y.; Gao, E. J.; Zhu, M. C. A new dysprosium (III)-organic framework as a ratiometric luminescent sensor for nitro-compounds and antibiotics in aqueous solutions. Inorgan. Chem. Commun. 2021, 133, 108952.

[58]

Wang, J. X.; Zhang, L.; Zhao, L. J.; Li, T.; Li, S. B. A new polycatenated framework encapsulated Keggin-type silicotungstate crystalline compound with bifunctional electrochemical performances. J. Mol. Struct. 2021, 1231, 129966.

[59]

Wang, J. T.; Zhan, G. Q.; Yang, X.; Zheng, D. C.; Li, X. Y.; Zhang, L. X.; Huang, T. F.; Wang, X. M. Rapid detection of nitrite based on nitrite-oxidizing bacteria biosensor and its application in surface water monitoring. Biosens. Bioelectron. 2022, 215, 114573.

[60]

Lim, H. S.; Lee, S. J.; Choi, E.; Lee, S. B.; Nam, H. S.; Lee, J. K. Development and validation of an ionic chromatography method for nitrite determination in processed foods and estimation of daily nitrite intake in Korea. Food Chem. 2022, 382, 132280.

File
0032_ESM1.pdf (1.7 MB)
0032_ESM2_checkcif.pdf (899.3 KB)
0032_ESM3_1-3.cif (6.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 July 2014
Revised: 09 August 2023
Accepted: 27 August 2023
Published: 12 September 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 21671138 and U1608224), the Distinguished Professor Project of Liaoning Province, the General Fund of the Education Department Project of Liaoning Province (No. LJKZ0315), Youth Fund of the University of Science and Technology Liaoning (No. 2020QN04), and Undergraduate Entrepreneurship and Innovation Project of the University of Science and Technology Liaoning (No. X202210146193).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return