Journal Home > Volume 2 , Issue 4

Hydrogen evolution reaction (HER) is a vital step in water electrolysis toward H2 production. However, conventional nanocatalysts lack uniform size, composition, structure, and a homogeneous chemical coordination environment, causing the retrieval of an unambiguous structure–performance relationship to be extremely challenging. Owing to its ultra-small size, definitive composition, well-defined structure, and uniform chemical environment at the atomic level, atomically precise Au nanoclusters can serve as a model catalyst to improve understanding of the relationship between the structure and its catalytic properties. First, this review describes the fundamental mechanism and significance of HER and highlights the unique advantages of employing Au nanoclusters as a model catalyst. Then, the recent progress involving the promotion and catalysis of HER by Au and Au-alloy nanoclusters is discussed, with a focus on elaborating the structure–performance relationship. The key factors affecting the catalytic performance, including but not limited to the electronic interaction, interfacial effect, size effect, charge state, ligand effect, metal core composition, single-atom doping, and geometric configuration effect, are analyzed with explicit examples. Finally, the current critical challenges involved in this process and future perspectives are discussed. We hope that this review can shed light on the design of efficient and stable coinage metal-nanocluster-based catalysts toward electrochemical H2 production and beyond.


menu
Abstract
Full text
Outline
About this article

Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: Progress and perspectives

Show Author's information Xin ZhuLeyi ChenYonggang LiuZhenghua Tang ( )
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China

Abstract

Hydrogen evolution reaction (HER) is a vital step in water electrolysis toward H2 production. However, conventional nanocatalysts lack uniform size, composition, structure, and a homogeneous chemical coordination environment, causing the retrieval of an unambiguous structure–performance relationship to be extremely challenging. Owing to its ultra-small size, definitive composition, well-defined structure, and uniform chemical environment at the atomic level, atomically precise Au nanoclusters can serve as a model catalyst to improve understanding of the relationship between the structure and its catalytic properties. First, this review describes the fundamental mechanism and significance of HER and highlights the unique advantages of employing Au nanoclusters as a model catalyst. Then, the recent progress involving the promotion and catalysis of HER by Au and Au-alloy nanoclusters is discussed, with a focus on elaborating the structure–performance relationship. The key factors affecting the catalytic performance, including but not limited to the electronic interaction, interfacial effect, size effect, charge state, ligand effect, metal core composition, single-atom doping, and geometric configuration effect, are analyzed with explicit examples. Finally, the current critical challenges involved in this process and future perspectives are discussed. We hope that this review can shed light on the design of efficient and stable coinage metal-nanocluster-based catalysts toward electrochemical H2 production and beyond.

Keywords: hydrogen evolution reaction, structure–performance relationship, model catalysts, atomically precise Au nanoclusters, progress and perspectives

References(109)

[1]

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

[2]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[3]
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019 , 364, eaav3506.
DOI
[4]

Saeedmanesh, A.; Kinnon, M. A. M.; Brouwer, J. Hydrogen is essential for sustainability. Curr. Opin. Electrochem. 2018, 12, 166–181.

[5]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[6]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[7]

Wang, J.; Zhang, H.; Wang, X. Recent methods for the synthesis of noble-metal-free hydrogen-evolution electrocatalysts: From nanoscale to sub-nanoscale. Small Methods 2017, 1, 1700118.

[8]

Pan, J.; Yu, S. W.; Jing, Z. W.; Zhou, Q. T.; Dong, Y. F.; Lou, X. D.; Xia, F. Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2021, 2, 2100076.

[9]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[10]

Liu, S. L.; Lin, Z. S.; Wan, R. D.; Liu, Y. G.; Liu, Z.; Zhang, S. D.; Zhang, X. F.; Tang, Z. H.; Lu, X. X.; Tian, Y. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. J. Mater. Chem. A 2021, 9, 21259–21269.

[11]

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

[12]

Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

[13]

Huang, Y. C.; Ge, J. X.; Hu, J.; Zhang, J. W.; Hao, J.; Wei, Y. G. Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701601.

[14]

Chen, Z. L.; Qing, H. L.; Zhou, K.; Sun, D. L.; Wu, R. B. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.

[15]

Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

[16]

Kang, Z. M.; Khan, M. A.; Gong, Y. M.; Javed, R.; Xu, Y.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 6089–6108.

[17]

Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365–1371.

[18]

Xu, S. J.; Zhou, Y. N.; Shen, G. P.; Dong, B. Ni(OH)2 derived from NiS2 induced by reflux playing three roles for hydrogen/oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2208052–2208057.

[19]

Gong, Y. X.; Yao, J. S.; Wang, P.; Li, Z. X.; Zhou, H. J.; Xu, C. M. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin. J. Chem. Eng. 2022, 43, 282–296.

[20]

Huang, Y. C.; Zhou, W. B.; Kong, W. C.; Chen, L. L.; Lu, X. L.; Cai, H. Q.; Yuan, Y. R.; Zhao, L. M.; Jiang, Y. Y.; Li, H. T. et al. Atomically interfacial engineering on molybdenum nitride quantum dots decorated n-doped graphene for high-rate and stable alkaline hydrogen production. Adv. Sci. 2022, 9, 2204949.

[21]

Tian, Z. Y.; Han, X. Q.; Du, J.; Li, Z. B.; Ma, Y. Y.; Han, Z. G. Bio-inspired FeMo2S4 microspheres as bifunctional electrocatalysts for boosting hydrogen oxidation/evolution reactions in alkaline solution. ACS Appl. Mater. Interfaces 2023, 15, 11853–11865.

[22]
Chen, L. L.; Huang, Y. C.; Ding, Y. P.; Yu, P.; Huang, F.; Zhou, W. B.; Wang, L. M.; Jiang, Y. Y.; Li, H. T.; Cai, H. Q. et al. Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis. Nano Res., in press, https://doi.org/10.1007/s12274-023-5666-2.
DOI
[23]

Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219.

[24]

Wang, X. S.; Zheng, Y.; Sheng, W. C.; Xu, Z. J.; Jaroniec, M.; Qiao, S. Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138.

[25]

Ge, J. X.; Hu, J.; Zhu, Y. T.; Zeb, Z.; Zang, D. J.; Qin, Z. X.; Huang, Y. C.; Zhang, J. W.; Wei, Y. G. Recent advances in polyoxometalates for applications in electrocatalytic hydrogen evolution reaction. Acta Phys. Chim. Sin. 2020, 36, 1906063.

[26]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S. C.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

[27]

Li, J. J.; Banis, M. N.; Ren, Z. H.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z.; Zhang, L.; Kong, F. P.; Sham, T. K. et al. Unveiling the nature of pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small 2021, 17, 2007245.

[28]

Xu, H.; Li, J. R.; Chu, X. X. Intensifying hydrogen spillover for boosting electrocatalytic hydrogen evolution reaction. Chem. Rec. 2023, 23, e202200244.

[29]

Wang, C. S.; Zhang, Q.; Yan, B.; You, B.; Zheng, J. J.; Feng, L.; Zhang, C. M.; Jiang, S. H.; Chen, W.; He, S. J. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 2023, 15, 52.

[30]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[31]

Zhao, S.; Jin, R. X.; Jin, R. C. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 2018, 3, 452–462.

[32]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[33]

Qin, L. B.; Ma, G. Y.; Wang, L. K.; Tang, Z. H. Atomically precise metal nanoclusters for (photo)electroreduction of CO2: Recent advances, challenges and opportunities. J. Energy Chem. 2021, 57, 359–370.

[34]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[35]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[36]

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

[37]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[38]

Lei, Z.; Wang, Q. M. Homo and heterometallic gold(I) clusters with hypercoordinated carbon. Coord. Chem. Rev. 2019, 378, 382–394.

[39]

Ma, X. S.; Tang, Y.; Ma, G. Y.; Qin, L. B.; Tang, Z. H. Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: Recent advances, grand challenges, and great opportunities. Nanoscale 2021, 13, 602–614.

[40]

Luo, G. G.; Guo, Q. L.; Wang, Z.; Sun, C. F.; Lin, J. Q.; Sun, D. New protective ligands for atomically precise silver nanoclusters. Dalton Trans. 2020, 49, 5406–5415.

[41]

Gao, Z. H.; Dong, J.; Zhang, Q. F.; Wang, L. S. Halogen effects on the electronic and optical properties of Au13 nanoclusters. Nanoscale Adv. 2020, 2, 4902–4907.

[42]

Yuan, Z. R.; Wang, Z.; Han, B. L.; Zhang, C. K.; Zhang, S. S.; Zhu, Z. Y.; Yu, J. H.; Li, T. D.; Li, Y. Z.; Tung, C. H. et al. Ag22 nanoclusters with thermally activated delayed fluorescence protected by Ag/cyanurate/phosphine metallamacrocyclic monolayers through in-situ ligand transesterification. Angew. Chem., Int. Ed. 2022, 61, e202211628.

[43]

Shen, H.; Wu, Q. Y.; Malola, S.; Han, Y. Z.; Xu, Z.; Qin, R. X.; Tang, X. K.; Chen, Y. B.; Teo, B. K.; Häkkinen, H. et al. N-heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis. J. Am. Chem. Soc. 2022, 144, 10844–10853.

[44]

Wang, Z.; Su, H. F.; Zhang, L. P.; Dou, J. M.; Tung, C. H.; Sun, D.; Zheng, L. S. Stepwise assembly of Ag42 nanocalices based on a MoVI-anchored thiacalix[4]arene metalloligand. ACS Nano 2022, 16, 4500–4507.

[45]

Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.; Malola, S.; Honkala, K.; Häkkinen, H. et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 2019, 13, 5975–5986.

[46]

Dickerson, M. B.; Sandhage, K. H.; Naik, R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 2008, 108, 4935–4978.

[47]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

[48]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[49]

Li, C. J.; Chai, O. J. H.; Yao, Q. F.; Liu, Z. H.; Wang, L.; Wang, H. J.; Xie, J. P. Electrocatalysis of gold-based nanoparticles and nanoclusters. Mater. Horiz. 2021, 8, 1657–1682.

[50]

Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

[51]

Zhao, S.; Jin, R. X.; Abroshan, H.; Zeng, C. J.; Zhang, H.; House, S. D.; Gottlieb, E.; Kim, H. J.; Yang, J. C.; Jin, R. C. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. J. Am. Chem. Soc. 2017, 139, 1077–1080.

[52]

Wang, L. K.; Tang, Z. H.; Yan, W.; Yang, H. Y.; Wang, Q. N.; Chen, S. W. Porous carbon-supported gold nanoparticles for oxygen reduction reaction: Effects of nanoparticle size. ACS Appl. Mater. Interfaces 2016, 8, 20635–20641.

[53]

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

[54]

Yan, H.; Xiang, H. X.; Liu, J. H.; Cheng, R. R.; Ye, Y. Q.; Han, Y. H.; Yao, C. H. The factors dictating properties of atomically precise metal nanocluster electrocatalysts. Small 2022, 18, 2200812.

[55]

Wang, J.; Xu, F.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand-shell engineering of a Au28 nanocluster boosts electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202207492.

[56]

Li, S. T.; Nagarajan, A. V.; Alfonso, D. R.; Sun, M. K.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 6351–6356.

[57]

Li, S. T.; Nagarajan, A. V.; Du, X. S.; Li, Y. W.; Liu, Z. Y.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Dissecting critical factors for electrochemical CO2 reduction on atomically precise Au nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202211771.

[58]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[59]

Yang, D.; Wang, J. W.; Wang, Q. J.; Yuan, Z. T.; Dai, Y. H.; Zhou, C. M.; Wan, X. Y.; Zhang, Q. C.; Yang, Y. H. Electrocatalytic CO2 reduction over atomically precise metal nanoclusters protected by organic ligands. ACS Nano 2022, 16, 15681–15704.

[60]

Yang, G. P.; Li, K.; Hu, C. W. Recent advances in uranium-containing polyoxometalates. Inorg. Chem. Front. 2022, 9, 5408–5433.

[61]

Ma, Y. B.; Gao, F.; Xiao, W. R.; Li, N.; Li, S. J.; Yu, B.; Chen, X. N. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin. Chem. Lett. 2022, 33, 4395–4399.

[62]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[63]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[64]

Jing, W. T.; Shen, H.; Qin, R. X.; Wu, Q. Y.; Liu, K. L.; Zheng, N. F. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 2023, 123, 5948–6002.

[65]

Qin, Z. X.; Wang, J. H.; Sharma, S.; Malola, S.; Wu, K. F.; Häkkinen, H.; Li, G. Photo-induced cluster-to-cluster transformation of [Au37- x Ag x (PPh3)13Cl10]3+ into [Au25- y Ag y (PPh3)10Cl8]+: Fragmentation of a trimer of 8-electron superatoms by light. J. Phys. Chem. Lett. 2021, 12, 10920–10926.

[66]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[67]

Qin, Z. X.; Zhao, D.; Zhao, L.; Xiao, Q.; Wu, T. T.; Zhang, J. W.; Wan, C. Q.; Li, G. Tailoring the stability, photocatalysis and photoluminescence properties of Au11 nanoclusters via doping engineering. Nanoscale Adv. 2019, 1, 2529–2536.

[68]

Zhang, Y. F.; Zhang, J. J.; Li, Z. W.; Qin, Z. X.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24.

[69]

Yao, Q. F.; Liu, L. M.; Malola, S.; Ge, M.; Xu, H. Y.; Wu, Z. N.; Chen, T. K.; Cao, Y. T.; Matus, M. F.; Pihlajamäki, A. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 2023, 15, 230–239.

[70]

Kang, X.; Chong, H. B.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale 2018, 10, 10758–10834.

[71]

Guan, Z. J.; Li, J. J.; Hu, F.; Wang, Q. M. Structural engineering toward gold nanocluster catalysis. Angew. Chem., Int. Ed. 2022, 61, e202209725.

[72]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[73]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[74]

Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

[75]

Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CT x MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano 2020, 14, 16140–16155.

[76]

Zhang, X.; Jia, F. F.; Song, S. X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 127013.

[77]

Zheng, S. Z.; Zheng, L. J.; Zhu, Z. Y.; Chen, J.; Kang, J. L.; Huang, Z. L.; Yang, D. C. MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 2018, 10, 62.

[78]

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

[79]

Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174.

[80]

Zhao, S.; Jin, R. X.; Song, Y. B.; Zhang, H.; House, S. D.; Yang, J. C.; Jin, R. C. Atomically precise gold nanoclusters accelerate hydrogen evolution over MoS2 nanosheets: The dual interfacial effect. Small 2017, 13, 1701519.

[81]

Gratious, S.; Karmakar, A.; Kumar, D.; Kundu, S.; Chakraborty, S.; Mandal, S. Incorporating Au11 nanoclusters on MoS2 nanosheet edges for promoting the hydrogen evolution reaction at the interface. Nanoscale 2022, 14, 7919–7926.

[82]

Kumar, B.; Kawawaki, T.; Shimizu, N.; Imai, Y.; Suzuki, D.; Hossain, S.; Nair, L. V.; Negishi, Y. Gold nanoclusters as electrocatalysts: Size, ligands, heteroatom doping, and charge dependences. Nanoscale 2020, 12, 9969–9979.

[83]

Lei, Z.; Li, J. J.; Wan, X. K.; Zhang, W. H.; Wang, Q. M. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem., Int. Ed. 2018, 57, 8639–8643.

[84]

Li, J. J.; Guan, Z. J.; Lei, Z.; Hu, F.; Wang, Q. M. Same magic number but different arrangement: Alkynyl-protected Au25 with D3 symmetry. Angew. Chem., Int. Ed. 2019, 58, 1083–1087.

[85]

Qin, Z. X.; Sharma, S.; Wan, C. Q.; Malola, S.; Xu, W. W.; Häkkinen, H.; Li, G. A homoleptic alkynyl-ligated [Au13Ag16L24]3- cluster as a catalytically active eight-electron superatom. Angew. Chem., Int. Ed. 2021, 60, 970–975.

[86]

Chen, L. Y.; Wang, L.; Shen, Q. L.; Liu, Y. G.; Tang, Z. H. All-alkynyl-protected coinage metal nanoclusters: From synthesis to electrocatalytic CO2 reduction applications. Mater. Chem. Front. 2023, 7, 1482–1495.

[87]

Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.

[88]

Chen, L. Y.; Sun, F.; Shen, Q. L.; Qin, L. B.; Liu, Y. G.; Qiao, L.; Tang, Q.; Wang, L. K.; Tang, Z. H. Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: Probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 2022, 15, 8908–8913.

[89]

Li, X.; Takano, S.; Tsukuda, T. Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: Alkynyl vs. thiolate. J. Phys. Chem. C 2021, 125, 23226–23230.

[90]

Hu, G. X.; Wu, Z. L.; Jiang, D. E. Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 7532–7537.

[91]

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

[92]

Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

[93]

Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.

[94]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[95]

Du, Y. X.; Xiang, J.; Ni, K.; Yun, Y. P.; Sun, G. D.; Yuan, X. Y.; Sheng, H. T.; Zhu, Y. W.; Zhu, M. Z. Design of atomically precise Au2Pd6 nanoclusters for boosting electrocatalytic hydrogen evolution on MoS2. Inorg. Chem. Front. 2018, 5, 2948–2954.

[96]

Tang, Y.; Sun, F.; Ma, X. S.; Qin, L. B.; Ma, G. Y.; Tang, Q.; Tang, Z. H. Alkynyl and halogen co-protected (AuAg)44 nanoclusters: A comparative study on their optical absorbance, structure, and hydrogen evolution performance. Dalton Trans. 2022, 51, 7845–7850.

[97]

Chen, L. Y.; Sun, F.; Shen, Q. L.; Wang, L.; Liu, Y. G.; Fan, H.; Tang, Q.; Tang, Z. H. Structure, optical properties, and catalytic applications of alkynyl-protected M4Rh2 (M = Ag/Au) nanoclusters with atomic precision: A comparative study. Dalton Trans. 2023, 52, 9441–9447.

[98]

Bootharaju, M. S.; Lee, C. W.; Deng, G. C.; Kim, H.; Lee, K.; Lee, S.; Chang, H.; Lee, S.; Sung, Y. E.; Yoo, J. S. et al. Atom-precise heteroatom core-tailoring of nanoclusters for enhanced solar hydrogen generation. Adv. Mater. 2023, 35, 2207765.

[99]

Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.

[100]

Choi, W.; Hu, G. X.; Kwak, K.; Kim, M.; Jiang, D. E.; Choi, J. P.; Lee, D. Effects of metal-doping on hydrogen evolution reaction catalyzed by MAu24 and M2Au36 nanoclusters (M = Pt, Pd). ACS Appl. Mater. Interfaces 2018, 10, 44645–44653.

[101]

Li, Y. W.; Li, S. T.; Nagarajan, A. V.; Liu, Z. Y.; Nevins, S.; Song, Y. B.; Mpourmpakis, G.; Jin, R. C. Hydrogen evolution electrocatalyst design: Turning inert gold into active catalyst by atomically precise nanochemistry. J. Am. Chem. Soc. 2021, 143, 11102–11108.

[102]

Seong, H.; Jo, Y.; Efremov, V.; Kim, Y.; Park, S.; Han, S. M.; Chang, K.; Park, J.; Choi, W.; Kim, W. et al. Transplanting gold active sites into non-precious-metal nanoclusters for efficient CO2-to-CO electroreduction. J. Am. Chem. Soc. 2023, 145, 2152–2160.

[103]

He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

[104]
Qin, L. B.; Sun, F.; Gong, Z. H.; Ma, G. Y.; Chen, Y.; Tang, Q.; Qiao, L.; Wang, R. H.; Liu, Z. Q.; Tang, Z. H. Electrochemical NO3- reduction catalyzed by atomically precise Ag30Pd4 bimetallic nanocluster: Synergistic catalysis or tandem catalysis? ACS Nano 2023 , 17, 12747–12758.
DOI
[105]

Sun, F.; Tang, Q.; Jiang, D. E. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 2022, 12, 8404–8433.

[106]

Li, Y. W.; Jin, R. C. Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: Atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 2020, 142, 13627–13644.

[107]

Wu, Z. L.; Jiang, D. E.; Mann, A. K. P.; Mullins, D. R.; Qiao, Z. A.; Allard, L. F.; Zeng, C. J.; Jin, R. C.; Overbury, S. H. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 2014, 136, 6111–6122.

[108]

Guan, Z. J.; He, R. L.; Yuan, S. F.; Li, J. J.; Hu, F.; Liu, C. Y.; Wang, Q. M. ligand engineering toward the trade-off between stability and activity in cluster catalysis. Angew Chem, Int. Ed. 2022, 61, e202116965.

[109]

Fang, J.; Li, J. G.; Zhang, B.; Yuan, X.; Asakura, H.; Tanaka, T.; Teramura, K.; Xie, J. P.; Yan, N. The support effect on the size and catalytic activity of thiolated Au25 nanoclusters as precatalysts. Nanoscale 2015, 7, 6325–6333.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 June 2023
Revised: 20 July 2023
Accepted: 01 August 2023
Published: 19 August 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

Y. G. L. gratefully acknowledges the financial support from the Basic Research and Applied Basic Research Foundation of Guangzhou (No. 202201010650). Z. H. T. acknowledges the financial support from Guangdong Natural Science Funds (No. 2022A1515011840).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return