Journal Home > Volume 2 , Issue 3

With the exhaustion of conventional fossil fuels, the exploration of green and sustainable energy will become an important topic of social development. Hydrogen is considered a clean and effective energy source, and its combustion produces only water, which is harmless to the environment. Photocatalytic water splitting, which utilizes solar energy and produces H2 and O2, can become a very important reaction for alleviating energy shortages and environmental pollution. Water splitting includes the reduction and oxidation half-reactions, among which the oxidation half-reaction is the rate-determining process. Even though current studies mainly focus on the H2 or O2 evolution reactions in the presence of sacrificial agents, overall water splitting remains a challenging problem. Metal–organic frameworks (MOFs) and their precursors have been attracting increasing attention as photocatalysts for water splitting. This paper reviews the research progress in MOFs for photocatalytic overall water splitting and discusses the development prospects and challenges of MOFs. In this study, the research progress in MOF-based water-splitting catalysts for photocatalysis and electrocatalysis is systematically reviewed. Herein, MOF-based catalysts are classified into MOFs, MOF composites, and MOF-derived photocatalysts. We also analyze the prospects and challenges in the preparation of efficient and stable MOF photocatalysts for overall water splitting and propose the construction of new efficient MOFs with double active sites, aiming to improve the efficiency of photocatalytic hydrogen and oxygen evolution to achieve the overall water splitting.


menu
Abstract
Full text
Outline
About this article

Metal–organic framework-based materials for photocatalytic overall water splitting: Status and prospects

Show Author's information Yang An1( )Lingling Wang1Weiyi Jiang2Xinling Lv1Guoqiang Yuan1Xinxin Hang1Huan Pang1 ( )
School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou 225009, China
State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China

Abstract

With the exhaustion of conventional fossil fuels, the exploration of green and sustainable energy will become an important topic of social development. Hydrogen is considered a clean and effective energy source, and its combustion produces only water, which is harmless to the environment. Photocatalytic water splitting, which utilizes solar energy and produces H2 and O2, can become a very important reaction for alleviating energy shortages and environmental pollution. Water splitting includes the reduction and oxidation half-reactions, among which the oxidation half-reaction is the rate-determining process. Even though current studies mainly focus on the H2 or O2 evolution reactions in the presence of sacrificial agents, overall water splitting remains a challenging problem. Metal–organic frameworks (MOFs) and their precursors have been attracting increasing attention as photocatalysts for water splitting. This paper reviews the research progress in MOFs for photocatalytic overall water splitting and discusses the development prospects and challenges of MOFs. In this study, the research progress in MOF-based water-splitting catalysts for photocatalysis and electrocatalysis is systematically reviewed. Herein, MOF-based catalysts are classified into MOFs, MOF composites, and MOF-derived photocatalysts. We also analyze the prospects and challenges in the preparation of efficient and stable MOF photocatalysts for overall water splitting and propose the construction of new efficient MOFs with double active sites, aiming to improve the efficiency of photocatalytic hydrogen and oxygen evolution to achieve the overall water splitting.

Keywords: MOF-based materials, metal–organic franeworks (MOFs), overall water-splitting photocatalysts

References(233)

[1]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[2]

Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.

[3]

Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Ferrer, B.; García, H. Metal-organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 2023, 123, 445–490.

[4]

Han, Q.; Dong, Y. J.; Xu, C. J.; Hu, Q. Y.; Dong, C. Z.; Liang, X. M.; Ding, Y. Immobilization of metal-organic framework MIL-100(Fe) on the surface of BiVO4: A new platform for enhanced visible-light-driven water oxidation. ACS Appl. Mater. Interfaces 2020, 12, 10410–10419.

[5]

Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B. Artificial photosynthesis: Molecular systems for catalytic water oxidation. Chem. Rev. 2014, 114, 11863–12001.

[6]

Zhang, Y. F.; Liu, H. X.; Gao, F. X.; Tan, X. L.; Cai, Y. W.; Hu, B. W.; Huang, Q. F.; Fang, M.; Wang, X. K. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078.

[7]

Gao, Y. W.; Li, S. M.; Li, Y. X.; Yao, L. Y.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl. Catal. B: Envion. 2017, 202, 165–174.

[8]

Zhang, B. B.; Dong, G. J.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Efficient hydrogen production from MIL-53(Fe) catalyst-modified Mo:BiVO4 photoelectrodes. Catal. Sci. Technol. 2017, 7, 4971–4976.

[9]

Jiao, Z. B.; Zheng, J. J.; Feng, C. C.; Wang, Z. L.; Wang, X. S.; Lu, G. X.; Bi, Y. P. Fe/W Co-doped BiVO4 photoanodes with a metal-organic framework cocatalyst for improved photoelectrochemical stability and activity. ChemSusChem 2016, 9, 2824–2831.

[10]

Cheng, X. M.; Zhao, J.; Sun, W. Y. Facet-engineering of materials for photocatalytic application: Status and future prospects. EnergyChem 2022, 4, 100084.

[11]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[12]

Wang, C. C.; Wang, X.; Liu, W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chem. Eng. J. 2020, 391, 123601.

[13]

Liu, G. Y.; Sheng, Y.; Ager, J. W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. EnergyChem 2019, 1, 100014.

[14]

Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.

[15]

Zhang, S. C.; Ye, H. N.; Hua, J. L.; Tian, H. Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem 2019, 1, 100015.

[16]

Hao, L.; Huang, H. W.; Zhang, Y. H.; Ma, T. Y. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.

[17]

Su, T. M.; Shao, Q.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253–2276.

[18]

Hu, C.; Huang, H. W.; Chen, F.; Zhang, Y. H.; Yu, H.; Ma, T. Y. Coupling piezocatalysis and photocatalysis in Bi4NbO8 X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 2020, 30, 1908168.

[19]

Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138, 5159–5170.

[20]

She, X. J.; Wu, J. J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y. H.; Nie, K. Q.; Liu, Y.; Yang, Y. C.; Rodrigues, M. T. F. et al. High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 2017, 7, 1700025.

[21]

Hu, C.; Tu, S. C.; Tian, N. Y.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Photocatalysis enhanced by external fields. Angew. Chem., Int. Ed. 2021, 60, 16309–16328.

[22]

Bai, Y.; Liu, C. L.; Shan, Y. Y.; Chen, T. T.; Zhao, Y.; Yu, C.; Pang, H. Metal-organic frameworks nanocomposites with different dimensionalities for energy conversion and storage. Adv. Energy Mater. 2022, 12, 2100346.

[23]

Li, X. Y.; Pi, Y. H.; Wu, L. Q.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-iron terephthalate metal-organic framework for MB degradation. Appl. Catal. B: Environ. 2017, 202, 653–663.

[24]

Pan, J. Q.; Wang, P. H.; Wang, P. P.; Yu, Q.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core-shell heterojunction via the HER/OER matching of Pt/MnOx. Chem. Eng. J. 2021, 405, 126622.

DOI
[25]

Babar, P. T.; Lokhande, A. C.; Pawar, B. S.; Gang, M. G.; Jo, E.; Go, C.; Suryawanshi, M. P.; Pawar, S. M.; Kim, J. H. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 2018, 427, 253–259.

[26]

Tang, H. B.; Luo, J. M.; Tian, X. L.; Dong, Y. Y.; Li, J.; Liu, M. R.; Liu, L. N.; Song, H. Y.; Liao, S. J. Template-free preparation of 3D porous Co-doped VN nanosheet-assembled microflowers with enhanced oxygen reduction activity. ACS Appl. Mater. Interfaces 2018, 10, 11604–11612.

[27]

Wei, J.; Chu, X.; Sun, X. Y.; Xu, K.; Deng, H. X.; Chen, J. G.; Wei, Z. M.; Lei, M. Machine learning in materials science. InfoMat 2019, 1, 338–358.

[28]

Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.

[29]

Han, Q.; Ding, Y. Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans. 2018, 47, 8180–8188.

[30]

Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: Strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Catal. B: Environ. 2019, 241, 351–358.

[31]

Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

[32]

Maeda, K.; Xiong, A. K.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D. L.; Kanehara, M.; Setoyama, T. et al. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem., Int. Ed. 2010, 49, 4096–4099.

[33]

Silva, C. G.; Bouizi, Y.; Fornés, V.; García, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009, 131, 13833–13839.

[34]

Zhao, C. X.; Tian, L.; Zou, Z. Y.; Chen, Z. P.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Appl. Catal. B: Environ. 2020, 268, 118445.

[35]

Yu, X. Y.; Feng, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1246–1250.

[36]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[37]

Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 2015, 115, 12974–13005.

[38]

Huang, X.; Zhang, S. T.; Tang, Y. J.; Zhang, X. Y.; Bai, Y.; Pang, H. Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216.

[39]

Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.

[40]

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

[41]

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

[42]

Dhakshinamoorthy, A.; Li, Z. H.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev. 2018, 47, 8134–8172.

[43]

Yu, Y. F.; Shi, Y. M.; Zhang, B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting. Acc. Chem. Res. 2018, 51, 1711–1721.

[44]

Shi, D. Y.; Zheng, R.; Sun, M. J.; Cao, X. R.; Sun, C. X.; Cui, C. J.; Liu, C. S.; Zhao, J. W.; Du, M. Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew. Chem., Int. Ed. 2017, 56, 14637–14641.

[45]

Chi, L.; Xu, Q.; Liang, X. Y.; Wang, J. D.; Su, X. T. Iron-based metal-organic frameworks as catalysts for visible light-driven water oxidation. Small 2016, 12, 1351–1358.

[46]

Xiao, Y. J.; Qi, Y.; Wang, X. L.; Wang, X. Y.; Zhang, F. X.; Li, C. Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation. Adv. Mater. 2018, 30, 1803401.

[47]

Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781.

[48]

Zou, L. L.; Hou, C. C.; Wang, Q. J.; Wei, Y. S.; Liu, Z.; Qin, J. S.; Pang, H.; Xu, Q. A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem., Int. Ed. 2020, 59, 19627–19632.

[49]

Mason, J. A.; Sumida, K.; Herm, Z. R.; Krishna, R.; Long, J. R. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 2011, 4, 3030–3040.

[50]

Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

[51]

Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers. Chem. Soc. Rev. 2009, 38, 1228–1236.

[52]

Paille, G.; Gomez-Mingot, M.; Roch-Marchal, C.; Lassalle-Kaiser, B.; Mialane, P.; Fontecave, M.; Mellot-Draznieks, C.; Dolbecq, A. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation. J. Am. Chem. Soc. 2018, 140, 3613–3618.

[53]

Han, J. Y.; Wang, D. P.; Du, Y. H.; Xi, S. B.; Chen, Z.; Yin, S. M.; Zhou, T. H.; Xu, R. Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Appl. Catal. A: Gen. 2016, 521, 83–89.

[54]

Lan, Q.; Zhang, Z. M.; Qin, C.; Wang, X. L.; Li, Y. G.; Tan, H. Q.; Wang, E. B. Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem.—Eur. J. 2016, 22, 15513–15520.

[55]

Buru, C. T.; Li, P.; Mehdi, B. L.; Dohnalkova, A.; Platero-Prats, A. E.; Browning, N. D.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. Adsorption of a catalytically accessible polyoxometalate in a mesoporous channel-type metal-organic framework. Chem. Mater. 2017, 29, 5174–5181.

[56]

Panagiotopoulos, A.; Douvas, A. M.; Argitis, P.; Coutsolelos, A. G. Porphyrin-sensitized evolution of hydrogen using Dawson and Keplerate polyoxometalate photocatalysts. ChemSusChem 2016, 9, 3213–3219.

[57]

Natali, M.; Deponti, E.; Vilona, D.; Sartorel, A.; Bonchio, M.; Scandola, F. A bioinspired system for light-driven water oxidation with a porphyrin sensitizer and a tetrametallic molecular catalyst. Eur. J. Inorg. Chem. 2015, 2015, 3467–3477.

[58]

Mukhopadhyay, S.; Debgupta, J.; Singh, C.; Kar, A.; Das, S. K. A keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew. Chem., Int. Ed. 2018, 57, 1918–1923.

[59]

Shah, W. A.; Waseem, A.; Nadeem, M. A.; Kögerler, P. Leaching-free encapsulation of cobalt-polyoxotungstates in MIL-100(Fe) for highly reproducible photocatalytic water oxidation. Appl. Catal. A: Gen. 2018, 567, 132–138.

[60]

Paille, G.; Gomez-Mingot, M.; Roch-Marchal, C.; Haouas, M.; Benseghir, Y.; Pino, T.; Ha-Thi, M. H.; Landrot, G.; Mialane, P.; Fontecave, M. et al. Thin films of fully noble metal-free POM@MOF for photocatalytic water oxidation. ACS Appl. Mater. Interfaces 2019, 11, 47837–47845.

[61]

An, Y.; Liu, Y. Y.; An, P. F.; Dong, J. C.; Xu, B. Y.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Whangbo, M. H.; Huang, B. B. NiII coordination to an al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 3036–3040.

[62]

An, Y.; Xu, B. Y.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Huang, B. B. Photocatalytic overall water splitting over MIL-125(Ti) upon CoPi and Pt Co-catalyst deposition. ChemistryOpen 2017, 6, 701–705.

[63]

Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 2018, 8, 3602–3635.

[64]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[65]

Wang, L. X.; Zhang, J. J.; Yu, H. G.; Patir, I. H.; Li, Y. J.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions. J. Phys. Chem. Lett. 2022, 13, 4695–4700.

[66]

Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556–565.

[67]

Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150.

[68]

Wang, J.; Zhang, Q.; Deng, F.; Luo, X. B.; Dionysiou, D. D. Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chem. Eng. J. 2020, 379, 122264.

[69]

Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[70]

Zeng, L.; Guo, X. Y.; He, C.; Duan, C. Y. Metal-organic frameworks: Versatile materials for heterogeneous photocatalysis. ACS Catal. 2016, 6, 7935–7947.

[71]

Li, Z. X.; Hu, M. L.; Wang, P.; Liu, J. H.; Yao, J. S.; Li, C. Y. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.

[72]

Wang, C. C.; Du, X. D.; Li, J.; Guo, X. X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Appl. Catal. B: Environ. 2016, 193, 198–216.

[73]

Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naitob, S.; Mori, W. Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n. Energy Environ. Sci. 2009, 2, 397–400.

DOI
[74]

Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Meng, X. G.; Liu, H. M.; Ye, J. H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. 2015, 2, 1500006.

[75]

Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 2013, 42, 13649–13657.

[76]

Li, A.; Zhu, W. J.; Li, C. C.; Wang, T.; Gong, J. L. Rational design of yolk-shell nanostructures for photocatalysis. Chem. Soc. Rev. 2019, 48, 1874–1907.

[77]

Chandra, R.; Mukhopadhyay, S.; Nath, M. TiO2@ZIF-8: A novel approach of modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles. Mater. Lett. 2016, 164, 571–574.

[78]

Chandra, R.; Nath, M. Multi-core-shell TiO2NPs@ZIF-8 composite for enhanced photocatalytic degradation and adsorption of methylene blue and rhodamine-B. ChemistrySelect 2017, 2, 7711–7722.

[79]

Hu, Q. S.; Chen, Y.; Li, M.; Zhang, Y.; Wang, B.; Zhao, Y. P.; Xia, J. X.; Yin, S.; Li, H. M. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants. Colloids Surf. A: Physicochem. Eng. Aspects 2019, 579, 123625.

[80]

Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.

[81]

Yan, X. L.; Komarneni, S.; Zhang, Z. Q.; Yan, Z. F. Extremely enhanced CO2 uptake by HKUST-1 metal-organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 2014, 183, 69–73.

[82]

Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal-organic framework. J. Phys. Chem. C 2012, 116, 20848–20853.

[83]

Karthik, P.; Balaraman, E.; Neppolian, B. Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal-organic framework (MOF) for boosting the effective charge carrier separation. Catal. Sci. Technol. 2018, 8, 3286–3294.

[84]

Wu, X. P.; Gagliardi, L.; Truhlar, D. G. Cerium metal-organic framework for photocatalysis. J. Am. Chem. Soc. 2018, 140, 7904–7912.

[85]

Wen, Y. H.; Feng, M. B.; Zhang, P.; Zhou, H. C.; Sharma, V. K.; Ma, X. M. Metal organic frameworks (MOFs) as photocatalysts for the degradation of agricultural pollutants in water. ACS EST Engg. 2021, 1, 804–826.

[86]

De Vos, A.; Hendrickx, K.; Van Der Voort, P.; Van Speybroeck, V.; Lejaeghere, K. Missing linkers: An alternative pathway to UiO-66 electronic structure engineering. Chem. Mater. 2017, 29, 3006–3019.

[87]

An, Y.; Liu, Y. Y.; Bian, H. T.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands. Sci. Bull. 2019, 64, 1502–1509.

[88]

Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

[89]

Sun, D. R.; Fu, Y. H.; Liu, W. J.; Ye, L.; Wang, D. K.; Yang, L.; Fu, X. Z.; Li, Z. H. Studies on photocatalytic CO2 reduction over NH2-UiO-66(Zr) and its derivatives: Towards a better understanding of photocatalysis on metal-organic frameworks. Chem.—Eur. J. 2013, 19, 14279–14285.

[90]

Wen, M. C.; Mori, K.; Kuwahara, Y.; An, T. C.; Yamashita, H. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl. Catal. B: Environ. 2017, 218, 555–569.

[91]

Wenger, O. S. Is iron the new ruthenium? Chem.—Eur. J. 2019, 25, 6043–6052.

DOI
[92]

Zhang, S. Q.; Li, L. N.; Zhao, S. G.; Sun, Z. H.; Hong, M. C.; Luo, J. H. Hierarchical metal-organic framework nanoflowers for effective CO2 transformation driven by visible light. J. Mater. Chem. A 2015, 3, 15764–15768.

[93]

Wang, X.; Lu, W. G.; Gu, Z. Y.; Wei, Z. W.; Zhou, H. C. Topology-guided design of an anionic bor-network for photocatalytic [Ru(bpy)3]2+ encapsulation. Chem. Commun. 2016, 52, 1926–1929.

[94]

Sun, L. B.; Liu, X. Q.; Zhou, H. C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 2015, 44, 5092–5147.

[95]

Subudhi, S.; Rath, D.; Parida, K. M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2018, 8, 679–696.

[96]

Younis, S. A.; Kwon, E. E.; Qasim, M.; Kim, K. H.; Kim, T.; Kukkar, D.; Dou, X. M.; Ali, I. Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Prog. Energy Combust. Sci. 2020, 81, 100870.

[97]

Sun, D. R.; Liu, W. J.; Qiu, M.; Zhang, Y. F.; Li, Z. H. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem. Commun. 2015, 51, 2056–2059.

[98]

Wang, G. Z.; Sun, Q. L.; Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y. A bismuth-based metal-organic framework as an efficient visible-light-driven photocatalyst. Chem.—Eur. J. 2015, 21, 2364–2367.

[99]

Jing, F. F.; Liang, R. W.; Xiong, J. H.; Chen, R.; Zhang, S. Y.; Li, Y. H.; Wu, L. MIL-68(Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain Cr(VI) and Malachite Green. Appl. Catal. B: Environ. 2017, 206, 9–15.

[100]

Zhang, F. M.; Jin, Y.; Shi, J.; Zhong, Y. J.; Zhu, W. D.; El-Shall, M. S. Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chem. Eng. J. 2015, 269, 236–244.

[101]

Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260.

[102]

Liang, R. W.; Luo, S. G.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B: Environ. 2015, 176–177, 240–248.

[103]

Li, J.; Yang, J.; Liu, Y. Y.; Ma, J. F. Two heterometallic-organic frameworks composed of iron(III)-salen-based ligands and d10 metals: Gas sorption and visible-light photocatalytic degradation of 2-chlorophenol. Chem.—Eur. J. 2015, 21, 4413–4421.

[104]

Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 19484–19518.

[105]

Yuan, J.; Liu, Y. Y.; Bo, T. T.; Zhou, W. Activated HER performance of defected single layered TiO2 nanosheet via transition metal doping. Int. J. Hydrogen Energy 2020, 45, 2681–2688.

[106]

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

[107]

Lu, S. C.; Yang, S. R.; Hu, X. L.; Liang, Z. Q.; Guo, Y. C.; Xue, Y. J.; Cui, H. Z.; Tian, J. Fabrication of TiO2 nanoflowers with bronze (TiO2(B))/anatase heterophase junctions for efficient photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 24398–24406.

[108]

Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106–12110.

[109]

Qian, Y. T.; Yang, M. K.; Zhang, F. F.; Du, J. M.; Li, K. D.; Lin, X. L.; Zhu, X. R.; Lu, Y. Y.; Wang, W. M.; Kang, D. J. A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Mater. Charact. 2018, 142, 43–49.

[110]

Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.

[111]

Luo, S.; Liu, X. Y.; Wei, X. J.; Fu, M.; Lu, P.; Li, X.; Jia, Y. M.; Ren, Q.; He, Y. Z. Noble-metal-free cobaloxime coupled with metal-organic frameworks NH2-MIL-125: A novel bifunctional photocatalyst for photocatalytic NO removal and H2 evolution under visible light irradiation. J. Hazard. Mater. 2020, 399, 122824.

[112]

Fumanal, M.; Ortega-Guerrero, A.; Jablonka, K. M.; Smit, B.; Tavernelli, I. Charge separation and charge carrier mobility in photocatalytic metal-organic frameworks. Adv. Funct. Mater. 2020, 30, 2003792.

[113]

Li, C. Q.; Xu, H.; Gao, J. K.; Du, W. N.; Shangguan, L. Q.; Zhang, X.; Lin, R. B.; Wu, H.; Zhou, W.; Liu, X. F. et al. Tunable titanium metal-organic frameworks with infinite 1D Ti-O rods for efficient visible-light-driven photocatalytic H2 evolution. J. Mater. Chem. A 2019, 7, 11928–11933.

[114]

Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabres i Xamena, F. X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem.—Eur. J. 2007, 13, 5106–5112.

[115]

Dong, X. Y.; Zhang, M.; Pei, R. B.; Wang, Q.; Wei, D. H.; Zang, S. Q.; Fan, Y. T.; Mak, T. C. W. A crystalline copper(II) coordination polymer for the efficient visible-light-driven generation of hydrogen. Angew. Chem., Int. Ed. 2016, 55, 2073–2077.

[116]

Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440–7444.

[117]

Wang, Y.; Yu, Y.; Li, R.; Liu, H. J.; Zhang, W.; Ling, L. J.; Duan, W. B.; Liu, B. Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO-66-NH2 octahedrons. J. Mater. Chem. A 2017, 5, 20136–20140.

[118]

Lan, G. X.; Zhu, Y. Y.; Veroneau, S. S.; Xu, Z. W.; Micheroni, D.; Lin, W. B. Electron injection from photoexcited metal-organic framework ligands to Ru2 secondary building units for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5326–5329.

[119]

Mao, S. M.; Zou, Y. J.; Sun, G. T.; Zeng, L. Z.; Wang, Z. Y.; Ma, D. D.; Guo, Y.; Cheng, Y. H.; Wang, C.; Shi, J. W. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J. Colloid Interface Sci. 2021, 581, 1–10.

[120]

Zhou, T. H.; Du, Y. H.; Borgna, A.; Hong, J. D.; Wang, Y. B.; Han, J. Y.; Zhang, W.; Xu, R. Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ. Sci. 2013, 6, 3229–3234.

[121]

Nasalevich, M. A.; Becker, R.; Ramos-Fernandez, E. V.; Castellanos, S.; Veber, S. L.; Fedin, M. V.; Kapteijn, F.; Reek, J. N. H.; van der Vlugt, J. I.; Gascon, J. Co@NH2-MIL-125(Ti): Cobaloxime-derived metal-organic framework-based composite for light-driven H2 production. Energy Environ. Sci. 2015, 8, 364–375.

[122]

Kong, X. J.; Lin, Z. K.; Zhang, Z. M.; Zhang, T.; Lin, W. B. Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6411–6416.

[123]

Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

[124]

Li, D. D.; Yu, S. H.; Jiang, H. L. From UV to near-infrared light-responsive metal-organic framework composites: Plasmon and upconversion enhanced photocatalysis. Adv. Mater. 2018, 30, 1707377.

[125]

Li, Z.; Xiao, J. D.; Jiang, H. L. Encapsulating a Co(II) molecular photocatalyst in metal-organic framework for visible-light-driven H2 production: Boosting catalytic efficiency via spatial charge separation. ACS Catal. 2016, 6, 5359–5365.

[126]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[127]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[128]

Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.

[129]

Shi, Y.; Yang, A. F.; Cao, C. S.; Zhao, B. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord. Chem. Rev. 2019, 390, 50–75.

[130]

Zhang, Z. M.; Zhang, T.; Wang, C.; Lin, Z. K.; Long, L. S.; Lin, W. B. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a wells-dawson-type polyoxometalate. J. Am. Chem. Soc. 2015, 137, 3197–3200.

[131]

Li, D. D.; Xu, H. Q.; Jiao, L.; Jiang, H. L. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 2019, 1, 100005.

[132]

Tian, P.; He, X.; Zhao, L.; Li, W. X.; Fang, W.; Chen, H.; Zhang, F. Q.; Huang, Z. H.; Wang, H. L. Ti3C2 nanosheets modified Zr-MOFs with Schottky junction for boosting photocatalytic HER performance. Solar Energy 2019, 188, 750–759.

[133]

Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appllytic hydrogen evolution. Appl. Catal. B: Environ.2020, 268, 118382.

[134]

Xu, X. Y.; Pan, L.; Han, Q. T.; Wang, C. Z.; Ding, P.; Pan, J.; Hu, J. G.; Zeng, H. B.; Zhou, Y. Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. J. Catal. 2019, 374, 237–245.

[135]

Wang, Z. L.; Fan, J. J.; Cheng, B.; Yu, J. G.; Xu, J. S. Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279.

[136]

Ran, J. R.; Zhu, B. C.; Qiao, S. Z. Phosphorene Co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2017, 56, 10373–10377.

[137]

Ma, B. J.; Li, D. K.; Wang, X. Y.; Lin, K. Y. Molybdenum-based Co-catalysts in photocatalytic hydrogen production: Categories, structures, and roles. ChemSusChem 2018, 11, 3871–3881.

[138]

Xu, J. X.; Gao, J. Y.; Wang, C.; Yang, Y.; Wang, L. NH2-MIL-125(Ti)/graphitic carbon nitride heterostructure decorated with NiPd co-catalysts for efficient photocatalytic hydrogen production. Appl. Catal. B: Environ. 2017, 219, 101–108.

[139]

Luo, H. Z.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Huang, D. L.; Lai, C.; Cheng, M.; Wang, W. J.; Xiong, W. P. et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 2020, 383, 123196.

[140]

Wang, Z. J.; Jin, Z. L.; Yuan, H.; Wang, G. R.; Ma, B. Z. Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. J. Colloid Interface Sci. 2018, 532, 287–299.

[141]

Kampouri, S.; Nguyen, T. N.; Ireland, C. P.; Valizadeh, B.; Ebrahim, F. M.; Capano, G.; Ongari, D.; Mace, A.; Guijarro, N.; Sivula, K. et al. Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: The impact of nickel phosphide nanoparticles. J. Mater. Chem. A 2018, 6, 2476–2481.

[142]

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

[143]

Salehifar, N.; Zarghami, Z.; Ramezani, M. A facile, novel and low-temperature synthesis of MgO nanorods via thermal decomposition using new starting reagent and its photocatalytic activity evaluation. Mater. Lett. 2016, 167, 226–229.

[144]

Liang, P.; Zhang, C.; Sun, H. Q.; Liu, S. M.; Tadé, M.; Wang, S. B. Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Adv. 2016, 6, 95903–95909.

[145]

Wu, Z. B.; Yuan, X. Z.; Zhang, J.; Wang, H.; Jiang, L. B.; Zeng, G. M. Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives. ChemCatChem 2017, 9, 41–64.

[146]

Chen, H. R.; Shen, K.; Chen, J. Y.; Chen, X. D.; Li, Y. W. Hollow-ZIF-templated formation of a ZnO@C-N-Co core-shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 2017, 5, 9937–9945.

[147]

Zhu, G.; Li, X. L.; Wang, H. Y.; Zhang, L. Microwave assisted synthesis of reduced graphene oxide incorporated MOF-derived ZnO composites for photocatalytic application. Catal. Commun. 2017, 88, 5–8.

[148]

Pan, L.; Muhammad, T.; Ma, L.; Huang, Z. F.; Wang, S. B.; Wang, L.; Zou, J. J.; Zhang, X. W. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B: Environ. 2016, 189, 181–191.

[149]

Zhang, C.; Ye, F. G.; Shen, S. F.; Xiong, Y. H.; Su, L. J.; Zhao, S. L. From metal-organic frameworks to magnetic nanostructured porous carbon composites: Towards highly efficient dye removal and degradation. RSC Adv. 2015, 5, 8228–8235.

[150]

Xu, J. N.; Lu, G. Z.; Guo, Y.; Guo, Y. L.; Gong, X. Q. A highly effective catalyst of Co-CeO2 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx storage capacity. Appl. Catal. A: Gen. 2017, 535, 1–8.

DOI
[151]

Guo, Z. G.; Cheng, J. K.; Hu, Z. G.; Zhang, M.; Xu, Q.; Kang, Z. X.; Zhao, D. Metal-organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. RSC Adv. 2014, 4, 34221–34225.

DOI
[152]

Zhang, Y. F.; Qiu, L. G.; Yuan, Y. P.; Zhu, Y. J.; Jiang, X.; Xiao, J. D. Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl. Catal. B: Environ. 2014, 144, 863–869.

[153]

Su, Y.; Ao, D.; Liu, H.; Wang, Y. MOF-derived yolk-shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 2017, 5, 8680–8689.

[154]

Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365.

[155]

Bala, S.; Mondal, I.; Goswami, A.; Pal, U.; Mondal, R. Co-MOF as a sacrificial template: Manifesting a new Co3O4/TiO2 system with a p-n heterojunction for photocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 20288–20296.

[156]

Lan, M.; Guo, R. M.; Dou, Y. B.; Zhou, J.; Zhou, A. W.; Li, J. R. Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation. Nano Energy 2017, 33, 238–246.

[157]

Zhao, X. X.; Feng, J. R.; Liu, J.; Shi, W.; Yang, G. M.; Wang, G. C.; Cheng, P. An efficient, visible-light-driven, hydrogen evolution catalyst NiS/ZnxCd1− xS nanocrystal derived from a metal-organic framework. Angew. Chem., Int. Ed. 2018, 57, 9790–9794.

DOI
[158]

Zhang, H. B.; Wang, T.; Wang, J. J.; Liu, H. M.; Dao, T. D.; Li, M.; Liu, G. G.; Meng, X. G.; Chang, K.; Shi, L. et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv. Mater. 2016, 28, 3703–3710.

[159]

Wang, S. B.; Guan, B. Y.; Lu, Y.; Lou, X. W. D. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.

[160]

Kumar, D. P.; Park, H.; Kim, E. H.; Hong, S.; Gopannagari, M.; Reddy, D. A.; Kim, T. K. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B: Environ. 2018, 224, 230–238.

[161]

Wang, Z. J.; Jin, Z. L.; Wang, G. R.; Ma, B. Z. Efficient hydrogen production over MOFs (ZIF-67) and g-C3N4 boosted with MoS2 nanoparticles. Int. J. Hydrogen Energy 2018, 43, 13039–13050.

[162]

Yu, Y. K.; Chen, C. W.; He, C.; Miao, J. F.; Chen, J. S. In situ growth synthesis of CuO@Cu-MOFs core-shell materials as novel low-temperature NH3-SCR catalysts. ChemCatChem. 2019, 11, 979–984.

[163]

Chen, H.; Gu, Z. G.; Mirza, S.; Zhang, S. H.; Zhang, J. Hollow Cu-TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 7175–7181.

[164]

Li, R.; Wu, S. K.; Wan, X. Y.; Xu, H. X.; Xiong, Y. J. Cu/TiO2 octahedral-shell photocatalysts derived from metal-organic framework@semiconductor hybrid structures. Inorg. Chem. Front. 2016, 3, 104–110.

[165]

Zhang, L. J.; Wang, G. R.; Hao, X. Q.; Jin, Z. L.; Wang, Y. B. MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 395, 125113.

[166]

Lv, T. P.; Xiao, B.; Zhou, S. Q.; Zhao, J. H.; Wu, T.; Zhang, J.; Zhang, Y. M.; Liu, Q. J. Rich oxygen vacancies, mesoporous TiO2 derived from MIL-125 for highly efficient photocatalytic hydrogen evolution. Chem. Commun. 2021, 57, 9704–9707.

[167]

Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X. G.; Zhu, K. K.; Jiao, F. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 2015, 137, 4223–4229.

[168]

Zhang, M.; Huang, Y. L.; Wang, J. W.; Lu, T. B. A facile method for the synthesis of a porous cobalt oxide-carbon hybrid as a highly efficient water oxidation catalyst. J. Mater. Chem. A 2016, 4, 1819–1827.

[169]

Joya, K. S.; Joya, Y. F.; Ocakoglu, K.; van de Krol, R. Water-splitting catalysis and solar fuel devices: Artificial leaves on the move. Angew. Chem., Int. Ed. 2013, 52, 10426–10437.

[170]

An, Y.; Li, H. L.; Liu, Y. Y.; Huang, B. B.; Sun, Q. L.; Dai, Y.; Qin, X. Y.; Zhang, X. Y. Photoelectrical, photophysical and photocatalytic properties of Al based MOFs: MIL-53(Al) and MIL-53-NH2(Al). J. Solid State Chem. 2016, 233, 194–198.

[171]

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem., Int. Ed. 2014, 53, 14016–14021.

[172]

Wang, C.; Xie, Z. G.; deKrafft, K. E.; Lin, W. B. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454.

[173]

Wang, C.; Wang, J. L.; Lin, W. B. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: A comprehensive structural, catalytic, spectroscopic, and kinetic study. J. Am. Chem. Soc. 2012, 134, 19895–19908.

[174]

Zhou, G.; Wu, M. F.; Xing, Q. J.; Li, F.; Liu, H.; Luo, X. B.; Zou, J. P.; Luo, J. M.; Zhang, A. Q. Synthesis and characterizations of metal-free semiconductor/MOFs with good stability and high photocatalytic activity for H2 evolution: A novel Z-scheme heterostructured photocatalyst formed by covalent bonds. Appl. Catal. B: Environ. 2018, 220, 607–614.

[175]

Wang, R.; Gu, L. N.; Zhou, J. J.; Liu, X. L.; Teng, F.; Li, C. H.; Shen, Y. H.; Yuan, Y. P. Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces 2015, 2, 1500037.

[176]

Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Chen, X. H.; Leng, L. J.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B: Environ. 2015, 174–175, 445–454.

[177]

Wang, S. B.; Wang, X. C. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B: Environ. 2015, 162, 494–500.

[178]

Wang, M. T.; Wang, D. K.; Li, Z. H. Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2016, 183, 47–52.

[179]

Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.

[180]

Zhang, C. F.; Qiu, L. G.; Ke, F.; Zhu, Y. J.; Yuan, Y. P.; Xu, G. S.; Jiang, X. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J. Mater. Chem. A 2013, 1, 14329–14334.

[181]

Huang, L. Z.; Liu, B. S. Synthesis of a novel and stable reduced graphene oxide/MOF hybrid nanocomposite and photocatalytic performance for the degradation of dyes. RSC Adv. 2016, 6, 17873–17879.

[182]

Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2017, 56, 7610–7614.

[183]

Wang, L. L.; Duan, X. D.; Wang, G. M.; Liu, C. B.; Luo, S. L.; Zhang, S. Q.; Zeng, Y. X.; Xu, Y. Z.; Liu, Y. T.; Duan, X. F. Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical “cauline leaf” nanoarchitectures. Appl. Catal. B: Environ. 2016, 186, 88–96.

[184]

Han, J. Y.; Wang, D. P.; Du, Y. H.; Xi, S. B.; Hong, J. D.; Yin, S. M.; Chen, Z.; Zhou, T. H.; Xu, R. Metal-organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. J. Mater. Chem. A 2015, 3, 20607–20613.

[185]

Nepal, B.; Das, S. Sustained water oxidation by a catalyst cage-isolated in a metal-organic framework. Angew. Chem., Int. Ed. 2013, 52, 7224–7227.

[186]

Lechner, M.; Güttel, R.; Streb, C. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: Catalyst development meets reactor design. Dalton Trans. 2016, 45, 16716–16726.

[187]

Walsh, J. J.; Bond, A. M.; Forster, R. J.; Keyes, T. E. Hybrid polyoxometalate materials for photo(electro-) chemical applications. Coord. Chem. Rev. 2016, 306, 217–234.

[188]

Sasan, K.; Lin, Q. P.; Mao, C. Y.; Feng, P. Y. Incorporation of iron hydrogenase active sites into a highly stable metal-organic framework for photocatalytic hydrogen generation. Chem. Commun. 2014, 50, 10390–10393.

[189]

Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg. Chem. 2012, 51, 6443–6445.

[190]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[191]

Chen, Y.; Hoang, T.; Ma, S. Q. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework. Inorg. Chem. 2012, 51, 12600–12602.

[192]

Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

[193]

Liang, X. M.; Lin, J. Q.; Cao, X. H.; Sun, W. J.; Yang, J. Y.; Ma, B. C.; Ding, Y. Enhanced photocatalytic activity of BiVO4 coupled with iron-based complexes for water oxidation under visible light irradiation. Chem. Commun. 2019, 55, 2529–2532.

[194]

Zheng, M.; Cao, X. H.; Ding, Y.; Tian, T.; Lin, J. Q. Boosting photocatalytic water oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: Analysis the true catalyst. J. Catal. 2018, 363, 109–116.

[195]

Ye, S.; Chen, R. T.; Xu, Y. X.; Fan, F. T.; Du, P. W.; Zhang, F. X.; Zong, X.; Chen, T.; Qi, Y.; Chen, P. et al. An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. J. Catal. 2016, 338, 168–173.

[196]

Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

[197]

Xie, F.; Lu, G. P.; Xie, R.; Chen, Q. H.; Jiang, H. F.; Zhang, M. MOF-derived subnanometer cobalt catalyst for selective C-H oxidative sulfonylation of tetrahydroquinoxalines with sodium sulfinates. ACS Catal. 2019, 9, 2718–2724.

[198]

Zhang, Y.; Huang, J. W.; Ding, Y. Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B: Environ. 2016, 198, 447–456.

[199]

Chang, X. X.; Wang, T.; Zhang, P.; Zhang, J. J.; Li, A.; Gong, J. L. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

[200]

Li, A.; Liu, Y. X.; Xu, X. J.; Zhang, Y. Y.; Si, Z. C.; Wu, X. D.; Ran, R.; Weng, D. MOF-derived (MoS2, γ-Fe2O3)/graphene Z-scheme photocatalysts with excellent activity for oxygen evolution under visible light irradiation. RSC Adv. 2020, 10, 17154–17162.

[201]

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

[202]

Du, X. Z.; Wu, Y. T.; Kou, Y. M.; Mu, J. L.; Yang, Z. B.; Hu, X. Y.; Teng, F. Amorphous carbon inhibited TiO2 phase transition in aqueous solution and its application in photocatalytic degradation of organic dye. J. Alloys Compd. 2019, 810, 151917.

[203]

Pan, J. Q.; You, M. Z.; Chi, C. Y.; Dong, Z. J.; Wang, B. B.; Zhu, M.; Zhao, W. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The two dimension carbon quantum dots modified porous g-C3N4/TiO2 nano-heterojunctions for visible light hydrogen production enhancement. Int. J. Hydrogen Energy 2018, 43, 6586–6593.

[204]

Dong, Y. M.; Kong, L. G.; Jiang, P. P.; Wang, G. L.; Zhao, N.; Zhang, H. Z.; Tang, B. A general strategy to fabricate NixP as highly efficient cocatalyst via photoreduction deposition for hydrogen evolution. ACS Sustain. Chem. Eng. 2017, 5, 6845–6853.

DOI
[205]

Zhang, G. G.; Lan, Z. A.; Lin, L. H.; Lin, S.; Wang, X. C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066.

[206]

Xiong, W. P.; Zeng, Z. T.; Li, X.; Zeng, G. M.; Xiao, R.; Yang, Z. H.; Zhou, Y. Y.; Zhang, C.; Cheng, M.; Hu, L. et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere 2018, 210, 1061–1069.

[207]

Santaclara, J. G.; Kapteijn, F.; Gascon, J.; van der Veen, M. A. Understanding metal-organic frameworks for photocatalytic solar fuel production. CrystEngComm 2017, 19, 4118–4125.

[208]

Nasalevich, M. A.; van der Veen, M.; Kapteijn, F.; Gascon, J. Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges. CrystEngComm 2014, 16, 4919–4926.

[209]

Melillo, A.; Cabrero-Antonino, M.; Navalón, S.; Álvaro, M.; Ferrer, B.; García, H. Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Appl. Catal. B: Environ. 2020, 278, 119345.

[210]

Remiro-Buenamañana, S.; Cabrero-Antonino, M.; Martínez-Guanter, M.; Álvaro, M.; Navalón, S.; García, H. Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Appl. Catal. B: Environ. 2019, 254, 677–684.

[211]

Zhang, J. J.; Bai, T. Y.; Huang, H.; Yu, M. H.; Fan, X. B.; Chang, Z.; Bu, X. H. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 2020, 32, 2004747.

[212]

Anantharaj, S.; Aravindan, V. Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv. Energy Mater. 2020, 10, 1902666.

[213]

Sang, Q. Q.; Hao, S.; Han, J. H.; Ding, Y. Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem 2022, 4, 100069.

[214]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[215]

Schalenbach, M.; Kasian, O.; Ledendecker, M.; Speck, F. D.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. The electrochemical dissolution of noble metals in alkaline media. Electrocatalysis 2018, 9, 153–161.

[216]

Tang, B.; Yang, X. D.; Kang, Z. H.; Feng, L. G. Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Appl. Catal. B: Environ. 2020, 278, 119281.

[217]

Lin, H. W.; Senthil Raja, D.; Chuah, X. F.; Hsieh, C. T.; Chen, Y. A.; Lu, S. Y. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl. Catal. B: Environ. 2019, 258, 118023.

[218]

Zhao, X. J.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew. Chem., Int. Ed. 2018, 57, 8921–8926.

[219]

Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M.; Wu, R. B. Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2020, 10, 1902714.

[220]

Cheng, M.; Liu, Y.; Huang, D. L.; Lai, C.; Zeng, G. M.; Huang, J. H.; Liu, Z. F.; Zhang, C.; Zhou, C. Y.; Qin, L. et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values. Chem. Eng. J. 2019, 362, 865–876.

[221]

Chen, J. M.; Chen, J. Y.; Li, Y. W. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. J. Mater. Chem. A 2017, 5, 24116–24125.

[222]

Llabrés i Xamena, F. X.; Corma, A.; Garcia, H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80–85.

[223]

Chen, L. F.; Hou, C. C.; Zou, L. L.; Kitta, M.; Xu, Q. Uniformly bimetal-decorated holey carbon nanorods derived from metal-organic framework for efficient hydrogen evolution. Sci. Bull. 2021, 66, 170–178.

[224]

Zhang, J. T.; Dai, L. M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem., Int. Ed. 2016, 55, 13296–13300.

[225]

Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–4684.

[226]

Du, M.; Li, Q.; Zhao, Y.; Liu, C. S.; Pang, H. A review of electrochemical energy storage behaviors based on pristine metal-organic frameworks and their composites. Coord. Chem. Rev. 2020, 416, 213341.

[227]

Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.

[228]

Li, J. G.; Xie, K. F.; Sun, H. C.; Li, Z. S.; Ao, X.; Chen, Z. H.; Ostrikov, K. K.; Wang, C. D.; Zhang, W. J. Template-directed bifunctional dodecahedral CoP/CN@MoS2 electrocatalyst for high efficient water splitting. ACS Appl. Mater. Interfaces 2019, 11, 36649–36657.

[229]

Kuznetsov, D. A.; Chen, Z. X.; Kumar, P. V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Muller, C. R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816.

[230]

Xu, C. Y.; Lu, W.; Yan, L.; Ning, J. Q.; Zheng, C. C.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. J. Colloid Interface Sci. 2020, 562, 400–408.

[231]

Chai, L. L.; Hu, Z. Y.; Wang, X.; Xu, Y. W.; Zhang, L. J.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting. Adv. Sci. 2020, 7, 1903195.

[232]

Zhan, W. W.; Yuan, Y. S.; Sun, L. M.; Yuan, Y. Y.; Han, X. G.; Zhao, Y. L. Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 2019, 15, 1901024.

[233]

Ko, D.; Jin, X. Z.; Seong, K. D.; Yan, B. Y.; Chai, H.; Kim, J. M.; Hwang, M.; Choi, J.; Zhang, W.; Piao, Y. Z. Few-layered MoS2 vertically aligned on 3D interconnected porous carbon nanosheets for hydrogen evolution. Appl. Catal. B: Environ. 2019, 248, 357–365.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 April 2023
Revised: 13 June 2023
Accepted: 06 July 2023
Published: 04 August 2023
Issue date: July 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22002136 and U1904215), Natural Science Foundation of Jiangsu Province (No. 20KJB150004), Lvyangjinfeng Talent Program of Yangzhou, Natural Science Foundation of Jiangsu Province (No. BK20200044), and Changjiang scholars’ program of the Ministry of Education (No. Q2018270).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return