Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mixed-ligand and anion-templated strategies in constructing metal nanoclusters are intricate and ingenious processes that face challenges to be studied. Herein, we report a cationic [Ag13(MoO4)4(SC6H4iPr)2(dppp)8]3+ (Ag13) nanocluster, which is templated using four [MoO4]2− anions and coprotected by 4-isopropylphenol (iPrC6H4S−) and 1,3-bis (diphenylphosphino) propane (dppp). Two capped (Ag4SC6H4iPr)2 units connect with the middle Ag@Ag4 layer via four [MoO4]2− anion templates to form a three-layer D4h-symmetric structure. An ideal crystallographic fourfold axis passes through the central Ag atom and the S and C atoms of the iPrC6H4S− ligand. The layer stacking generates a nonface-centered cubic (nonFCC) structure. The structure and composition of the Ag13 nanocluster have been fully characterized. In addition, the solid ultraviolet–visible (UV–vis) spectra show that Ag13 is a potential narrow-band-gap semiconductor. The photoluminescence (PL) of orange-yellow-light emission is attributed to ligand-to-metal charge transfer. This work has advanced the research on shell engineering of anionic templates and coprotection to assemble high-symmetric Ag nanoclusters.
Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.
Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.
Jin, J. L.; Xie, Y. P.; Cui, H.; Duan, G. X.; Lu, X.; Mak, T. C. W. Structure-directing role of phosphonate in the synthesis of high-nuclearity silver(I) sulfide-ethynide-thiolate clusters. Inorg. Chem. 2017, 56, 10412–10417.
Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.
Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.
Guan, Z. J.; Zeng, J. L.; Nan, Z. A.; Wan, X. K.; Lin, Y. M.; Wang, Q. M. Thiacalix[4]arene: New protection for metal nanoclusters. Sci. Adv. 2016, 2, e1600323.
Jing, X. M.; Fu, F. Y.; Wang, R. J.; Xin, X.; Qin, L.; Lv, H. J.; Yang, G. Y. Robust enantiomeric two-dimensional assembly of atomically precise silver clusters. ACS Nano 2022, 16, 15188–15196.
Yuan, Z. R.; Wang, Z.; Han, B. L.; Zhang, C. K.; Zhang, S. S.; Zhu, Z. Y.; Yu, J. H.; Li, T. D.; Li, Y. Z.; Tung, C. H. et al. Ag22 nanoclusters with thermally activated delayed fluorescence protected by Ag/cyanurate/phosphine metallamacrocyclic monolayers through in-situ ligand transesterification. Angew. Chem. , Int. Ed. 2022, 61, e202211628.
Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. Chloride-promoted formation of a bimetallic nanocluster Au80Ag30 and the total structure determination. J. Am. Chem. Soc. 2016, 138, 7848–7851.
Das, A. K.; Mekkat, R.; Maity, S.; Nair, A. S.; Bhandary, S.; Bhowal, R.; Patra, A.; Pathak, B.; Chopra, D.; Mandal, S. Role of ligand on photophysical properties of nanoclusters with fcc kernel: A case study of Ag14(SC6H4X)12(PPh3)8 (X = F, Cl, Br). Inorg. Chem. 2021, 60, 19270–19277.
Zhang, W. J.; Liu, Z.; Song, K. P.; Aikens, C. M.; Zhang, S. S.; Wang, Z.; Tung, C. H.; Sun, D. A 34-electron superatom Ag78 cluster with regioselective ternary ligands shells and its 2D rhombic superlattice assembly. Angew. Chem. , Int. Ed. 2021, 60, 4231–4237.
Xie, Y. P.; Jin, J. L.; Lu, X.; Mak, T. C. W. High-nuclearity silver thiolate clusters constructed with phosphonates. Angew. Chem. , Int. Ed. 2015, 54, 15176–15180.
Jin, J. L.; Shen, Y. L.; Xie, Y. P.; Lu, X. Anion templated synthesis of silver(I)-ethynide dithiophosphate clusters. Cryst. Growth Des. 2018, 18, 4372–4377.
Das, A.; Li, T.; Nobusada, K.; Zeng, Q.; Rosi, N. L.; Jin, R. C. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J. Am. Chem. Soc. 2012, 134, 20286–20289.
Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2–18): A stepping stone to cluster-assembled materials. J. Phys. Chem. C 2007, 111, 7845–7847.
Yang, H. Y.; Lei, J.; Wu, B. H.; Wang, Y.; Zhou, M.; Xia, A. D.; Zheng, L. S.; Zheng, N. F. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun. 2013, 49, 300–302.
Bootharaju, M. S.; Dey, R.; Gevers, L. E.; Hedhili, M. N.; Basset, J. M.; Bakr, O. M. A new class of atomically precise, hydride-rich silver nanoclusters Co-protected by phosphines. J. Am. Chem. Soc. 2016, 138, 13770–13773.
Wang, Z.; Su, H. F.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nat. Commun. 2018, 9, 2094.
Alhilaly, M. J.; Bootharaju, M. S.; Joshi, C. P.; Besong, T. M.; Emwas, A. H.; Juarez-Mosqueda, R.; Kaappa, S.; Malola, S.; Adil, K.; Shkurenko, A. et al. [Ag67(SPhMe2)32(PPh3)8]3+:Synthesis, total structure, and optical properties of a large box-shaped silver nanocluster. J. Am. Chem. Soc. 2016, 138, 14727–14732.
Bestgen, S. ; Fuhr, O. ; Breitung, B. ; Chakravadhanula, V. S. K. ; Guthausen, G. ; Hennrich, F. ; Yu, W. ; Kappes, M. M. ; Roesky, P. W. ; Fenske, D. [Ag115S34(SCH2C6H4tBu)47(dpph)6]: Synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster. Chem. Sci. 2017, 8, 2235–2240.
Teo, B. K.; Yang, H. Y.; Yan, J. Z.; Zheng, N. F. Supercubes, supersquares, and superrods of face-centered cubes (FCC): Atomic and electronic requirements of [Mm(SR)l(PR'3)8]q nanoclusters (M = coinage metals) and their implications with respect to nucleation and growth of FCC metals. Inorg. Chem. 2017, 56, 11470–11479.
Li, X. Y.; Wang, Z.; Su, H. F.; Feng, S.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Anion-templated nanosized silver clusters protected by mixed thiolate and diphosphine. Nanoscale 2017, 9, 3601–3608.
Li, X. Y.; Su, H. F.; Zhou, R. Q.; Feng, S.; Tan, Y. Z.; Wang, X. P.; Jia, J.; Kurmoo, M.; Sun, D.; Zheng, L. S. General assembly of twisted trigonal-prismatic nonanuclear silver(I) clusters. Chem. —Eur. J. 2016, 22, 3019–3028.
Han, B. L.; Wang, Z.; Gupta, R. K.; Feng, L.; Wang, S. N.; Kurmoo, M.; Gao, Z. Y.; Schein, S.; Tung, C. H.; Sun, D. Precise implantation of an archimedean Ag@Cu12 cuboctahedron into a platonic Cu4Bis(diphenylphosphino)hexane6 tetrahedron. ACS Nano 2021, 15, 8733–8741.
Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.
Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.
Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.
Zhang, S. S.; Chen, J. Y.; Li, K.; Yuan, J. D.; Su, H. F.; Wang, Z.; Kurmoo, M.; Li, Y. Z.; Gao, Z. Y.; Tung, C. H. et al. Janus cluster: Asymmetric coverage of a Ag43 cluster on the symmetric preyssler P5W30 polyoxometalate. Chem. Mater. 2021, 33, 9708–9714.
Zhao, Y. Q.; Yu, K.; Wang, L. W.; Wang, Y.; Wang, X. P.; Sun, D. Anion-induced supramolecular isomerism in two preyssler P5W30 polyoxometalate-based hybrid materials. Inorg. Chem. 2014, 53, 11046–11050.
Liao, J. H.; Chang, H. W.; You, H. C.; Fang, C. S.; Liu, C. W. Tetrahedral-shaped anions as a template in the synthesis of high-nuclearity silver(I) dithiophosphate clusters. Inorg. Chem. 2011, 50, 2070–2072.
Chang, H. W.; Liao, J. H.; Li, B.; Chen, Y. J.; Liu, C. W. Trigonal pyramidal oxyanions as structure-directing templates for the synthesis of silver dithiolate clusters. J. Struct. Chem. 2014, 55, 1426–1432.
Liao, J. H.; Chen, H.; You, H. J.; Liu, C. W. Oxocarbon anions templated in silver clusters. Inorg. Chem. 2022, 61, 14115–14120.
Wang, Z.; Yang, F. L.; Yang, Y.; Liu, Q. Y.; Sun, D. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag6 kernels. Chem. Commun. 2019, 55, 10296–10299.
Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.
Zhou, K.; Geng, Y.; Yan, L. K.; Wang, X. L.; Liu, X. C.; Shan, G. G.; Shao, K. Z.; Su, Z. M.; Yu, Y. N. An ultrastable {Ag55Mo6} nanocluster with a Ag-centered multishell structure. Chem. Commun. 2014, 50, 11934–11937.
Gao, G. G.; Cheng, P. S.; Mak, T. C. W. Acid-induced surface functionalization of polyoxometalate by enclosure in a polyhedral silver-alkynyl cage. J. Am. Chem. Soc. 2009, 131, 18257–18259.
Wang, Z.; Su, H. F.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D.; Zheng, L. S. Johnson solids: Anion-templated silver thiolate clusters capped by sulfonate. Chem.—Eur. J. 2018, 24, 1640–1650.
Jin, J. L.; Shen, Y. L.; Xie, Y. P.; Lu, X. Silver ethynide clusters constructed with fluorinated β-diketonate ligands. CrystEngComm 2018, 20, 2036–2042.
Kilpatrick, A. F. R.; Green, J. C.; Turner, Z. R.; Buffet, J. C.; O’Hare, D. Zirconium arene triple-decker sandwich complexes: Synthesis, electronic structure and bonding. Chem. Commun. 2017, 53, 12048–12051.
Guo, L. Y.; Su, H. F.; Kurmoo, M.; Wang, X. P.; Zhao, Q. Q.; Lin, S. C.; Tung, C. H.; Sun, D.; Zheng, L. S. Multifunctional triple-decker inverse 12-metallacrown-4 sandwiching halides. ACS Appl. Mater. Interfaces 2017, 9, 19980–19987.
Liao, L. W.; Zhuang, S. L.; Wang, P.; Xu, Y. N.; Yan, N.; Dong, H. W.; Wang, C. M.; Zhao, Y.; Xia, N.; Li, J. et al. Quasi-dual-packed-kerneled Au49(2, 4-DMBT)27 nanoclusters and the influence of kernel packing on the electrochemical gap. Angew. Chem. , Int. Ed. 2017, 56, 12644–12648.
Qu, M.; Zhang, F. Q.; Wang, D. H.; Li, H.; Hou, J. J.; Zhang, X. M. Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem. , Int. Ed. 2020, 59, 6507–6512.
Cui, P.; Hu, H. S.; Zhao, B.; Miller, J. T.; Cheng, P.; Li, J. A multicentre-bonded [ZnI]8 cluster with cubic aromaticity. Nat. Commun. 2015, 6, 6331.
Verma, G.; Forrest, K.; Carr, B. A.; Vardhan, H.; Ren, J. Y.; Pham, T.; Space, B.; Kumar, S.; Ma, S. Q. Indium-organic framework with soc topology as a versatile catalyst for highly efficient one-pot strecker synthesis of α-aminonitriles. ACS Appl. Mater. Interfaces 2021, 13, 52023–52033.
Shi, W. Q.; Guan, Z. J.; Li, J. J.; Han, X. S.; Wang, Q. M. Site-specific doping of silver atoms into a Au25 nanocluster as directed by ligand binding preferences. Chem. Sci. 2022, 13, 5148–5154.
AbdulHalim, L. G.; Ashraf, S.; Katsiev, K.; Kirmani, A. R.; Kothalawala, N.; Anjum, D. H.; Abbas, S.; Amassian, A.; Stellacci, F.; Dass, A. et al. A scalable synthesis of highly stable and water dispersible Ag44(SR)30 nanoclusters. J. Mater. Chem. A 2013, 1, 10148–10154.
Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem. , Int. Ed. 2021, 60, 5225–5229.
Zhao, J. Q.; Han, M. F.; Zhao, X. J.; Ma, Y. Y.; Jing, C. Q.; Pan, H. M.; Li, D. Y.; Yue, C. Y.; Lei, X. W. Structural dimensionality modulation toward enhanced photoluminescence efficiencies of hybrid lead-free antimony halides. Adv. Opt. Mater. 2021, 9, 2100556.
Xu, Y. X.; Chai, X. C.; Yang, W. T.; Hu, J. R.; Chen, J. N.; He, Y. B. Formation of a stable guanidinium-formamidinium phase in bismuth chloride perovskites with broadband emission. Chem. Mater. 2021, 33, 3258–3265.
Wang, Z.; Li, X. Y.; Liu, L. W.; Yu, S. Q.; Feng, Z. Y.; Tung, C. H.; Sun, D. Beyond clusters: Supramolecular networks self-assembled from nanosized silver clusters and inorganic anions. Chem.—Eur. J. 2016, 22, 6830–6836.
Li, X. Y.; Su, H. F.; Yu, K.; Tan, Y. Z.; Wang, X. P.; Zhao, Y. Q.; Sun, D.; Zheng, L. S. A platonic solid templating Archimedean solid: An unprecedented nanometre-sized Ag37 cluster. Nanoscale 2015, 7, 8284–8288.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.