AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

[MoO4]2−-templated D4h-symmetric sandwich Ag13 nanocluster coprotected with thiolate and phosphine

Jin-Ping Gao1Zhikai Qi1Fu-Qiang Zhang1Xian-Ming Zhang1,2 ( )
Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material Science, Shanxi Normal University, Taiyuan 030032, China
College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

Abstract

Mixed-ligand and anion-templated strategies in constructing metal nanoclusters are intricate and ingenious processes that face challenges to be studied. Herein, we report a cationic [Ag13(MoO4)4(SC6H4iPr)2(dppp)8]3+ (Ag13) nanocluster, which is templated using four [MoO4]2− anions and coprotected by 4-isopropylphenol (iPrC6H4S) and 1,3-bis (diphenylphosphino) propane (dppp). Two capped (Ag4SC6H4iPr)2 units connect with the middle Ag@Ag4 layer via four [MoO4]2− anion templates to form a three-layer D4h-symmetric structure. An ideal crystallographic fourfold axis passes through the central Ag atom and the S and C atoms of the iPrC6H4S ligand. The layer stacking generates a nonface-centered cubic (nonFCC) structure. The structure and composition of the Ag13 nanocluster have been fully characterized. In addition, the solid ultraviolet–visible (UV–vis) spectra show that Ag13 is a potential narrow-band-gap semiconductor. The photoluminescence (PL) of orange-yellow-light emission is attributed to ligand-to-metal charge transfer. This work has advanced the research on shell engineering of anionic templates and coprotection to assemble high-symmetric Ag nanoclusters.

Electronic Supplementary Material

Download File(s)
0028_ESM.pdf (3.3 MB)
0028_ESM_GJP210409-1-5_auto.cif (2.3 MB)
0028_ESM_checkcif.pdf (159.8 KB)

References

[1]

Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

[2]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[3]

Jin, J. L.; Xie, Y. P.; Cui, H.; Duan, G. X.; Lu, X.; Mak, T. C. W. Structure-directing role of phosphonate in the synthesis of high-nuclearity silver(I) sulfide-ethynide-thiolate clusters. Inorg. Chem. 2017, 56, 10412–10417.

[4]

Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.

[5]

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

[6]

Guan, Z. J.; Zeng, J. L.; Nan, Z. A.; Wan, X. K.; Lin, Y. M.; Wang, Q. M. Thiacalix[4]arene: New protection for metal nanoclusters. Sci. Adv. 2016, 2, e1600323.

[7]

Jing, X. M.; Fu, F. Y.; Wang, R. J.; Xin, X.; Qin, L.; Lv, H. J.; Yang, G. Y. Robust enantiomeric two-dimensional assembly of atomically precise silver clusters. ACS Nano 2022, 16, 15188–15196.

[8]

Yuan, Z. R.; Wang, Z.; Han, B. L.; Zhang, C. K.; Zhang, S. S.; Zhu, Z. Y.; Yu, J. H.; Li, T. D.; Li, Y. Z.; Tung, C. H. et al. Ag22 nanoclusters with thermally activated delayed fluorescence protected by Ag/cyanurate/phosphine metallamacrocyclic monolayers through in-situ ligand transesterification. Angew. Chem. , Int. Ed. 2022, 61, e202211628.

[9]

Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. Chloride-promoted formation of a bimetallic nanocluster Au80Ag30 and the total structure determination. J. Am. Chem. Soc. 2016, 138, 7848–7851.

[10]

Das, A. K.; Mekkat, R.; Maity, S.; Nair, A. S.; Bhandary, S.; Bhowal, R.; Patra, A.; Pathak, B.; Chopra, D.; Mandal, S. Role of ligand on photophysical properties of nanoclusters with fcc kernel: A case study of Ag14(SC6H4X)12(PPh3)8 (X = F, Cl, Br). Inorg. Chem. 2021, 60, 19270–19277.

[11]

Zhang, W. J.; Liu, Z.; Song, K. P.; Aikens, C. M.; Zhang, S. S.; Wang, Z.; Tung, C. H.; Sun, D. A 34-electron superatom Ag78 cluster with regioselective ternary ligands shells and its 2D rhombic superlattice assembly. Angew. Chem. , Int. Ed. 2021, 60, 4231–4237.

[12]

Xie, Y. P.; Jin, J. L.; Lu, X.; Mak, T. C. W. High-nuclearity silver thiolate clusters constructed with phosphonates. Angew. Chem. , Int. Ed. 2015, 54, 15176–15180.

[13]

Jin, J. L.; Shen, Y. L.; Xie, Y. P.; Lu, X. Anion templated synthesis of silver(I)-ethynide dithiophosphate clusters. Cryst. Growth Des. 2018, 18, 4372–4377.

[14]

Das, A.; Li, T.; Nobusada, K.; Zeng, Q.; Rosi, N. L.; Jin, R. C. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J. Am. Chem. Soc. 2012, 134, 20286–20289.

[15]

Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2–18): A stepping stone to cluster-assembled materials. J. Phys. Chem. C 2007, 111, 7845–7847.

[16]

Yang, H. Y.; Lei, J.; Wu, B. H.; Wang, Y.; Zhou, M.; Xia, A. D.; Zheng, L. S.; Zheng, N. F. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun. 2013, 49, 300–302.

[17]

Bootharaju, M. S.; Dey, R.; Gevers, L. E.; Hedhili, M. N.; Basset, J. M.; Bakr, O. M. A new class of atomically precise, hydride-rich silver nanoclusters Co-protected by phosphines. J. Am. Chem. Soc. 2016, 138, 13770–13773.

[18]

Wang, Z.; Su, H. F.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nat. Commun. 2018, 9, 2094.

[19]

Alhilaly, M. J.; Bootharaju, M. S.; Joshi, C. P.; Besong, T. M.; Emwas, A. H.; Juarez-Mosqueda, R.; Kaappa, S.; Malola, S.; Adil, K.; Shkurenko, A. et al. [Ag67(SPhMe2)32(PPh3)8]3+:Synthesis, total structure, and optical properties of a large box-shaped silver nanocluster. J. Am. Chem. Soc. 2016, 138, 14727–14732.

[20]

Bestgen, S. ; Fuhr, O. ; Breitung, B. ; Chakravadhanula, V. S. K. ; Guthausen, G. ; Hennrich, F. ; Yu, W. ; Kappes, M. M. ; Roesky, P. W. ; Fenske, D. [Ag115S34(SCH2C6H4tBu)47(dpph)6]: Synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster. Chem. Sci. 2017, 8, 2235–2240.

[21]

Teo, B. K.; Yang, H. Y.; Yan, J. Z.; Zheng, N. F. Supercubes, supersquares, and superrods of face-centered cubes (FCC): Atomic and electronic requirements of [Mm(SR)l(PR'3)8]q nanoclusters (M = coinage metals) and their implications with respect to nucleation and growth of FCC metals. Inorg. Chem. 2017, 56, 11470–11479.

[22]

Li, X. Y.; Wang, Z.; Su, H. F.; Feng, S.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Anion-templated nanosized silver clusters protected by mixed thiolate and diphosphine. Nanoscale 2017, 9, 3601–3608.

[23]

Li, X. Y.; Su, H. F.; Zhou, R. Q.; Feng, S.; Tan, Y. Z.; Wang, X. P.; Jia, J.; Kurmoo, M.; Sun, D.; Zheng, L. S. General assembly of twisted trigonal-prismatic nonanuclear silver(I) clusters. Chem. —Eur. J. 2016, 22, 3019–3028.

[24]

Han, B. L.; Wang, Z.; Gupta, R. K.; Feng, L.; Wang, S. N.; Kurmoo, M.; Gao, Z. Y.; Schein, S.; Tung, C. H.; Sun, D. Precise implantation of an archimedean Ag@Cu12 cuboctahedron into a platonic Cu4Bis(diphenylphosphino)hexane6 tetrahedron. ACS Nano 2021, 15, 8733–8741.

[25]

Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.

[26]

Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[27]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[28]

Zhang, S. S.; Chen, J. Y.; Li, K.; Yuan, J. D.; Su, H. F.; Wang, Z.; Kurmoo, M.; Li, Y. Z.; Gao, Z. Y.; Tung, C. H. et al. Janus cluster: Asymmetric coverage of a Ag43 cluster on the symmetric preyssler P5W30 polyoxometalate. Chem. Mater. 2021, 33, 9708–9714.

[29]

Zhao, Y. Q.; Yu, K.; Wang, L. W.; Wang, Y.; Wang, X. P.; Sun, D. Anion-induced supramolecular isomerism in two preyssler P5W30 polyoxometalate-based hybrid materials. Inorg. Chem. 2014, 53, 11046–11050.

[30]

Liao, J. H.; Chang, H. W.; You, H. C.; Fang, C. S.; Liu, C. W. Tetrahedral-shaped anions as a template in the synthesis of high-nuclearity silver(I) dithiophosphate clusters. Inorg. Chem. 2011, 50, 2070–2072.

[31]

Chang, H. W.; Liao, J. H.; Li, B.; Chen, Y. J.; Liu, C. W. Trigonal pyramidal oxyanions as structure-directing templates for the synthesis of silver dithiolate clusters. J. Struct. Chem. 2014, 55, 1426–1432.

[32]

Liao, J. H.; Chen, H.; You, H. J.; Liu, C. W. Oxocarbon anions templated in silver clusters. Inorg. Chem. 2022, 61, 14115–14120.

[33]

Wang, Z.; Yang, F. L.; Yang, Y.; Liu, Q. Y.; Sun, D. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag6 kernels. Chem. Commun. 2019, 55, 10296–10299.

[34]

Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.

[35]

Zhou, K.; Geng, Y.; Yan, L. K.; Wang, X. L.; Liu, X. C.; Shan, G. G.; Shao, K. Z.; Su, Z. M.; Yu, Y. N. An ultrastable {Ag55Mo6} nanocluster with a Ag-centered multishell structure. Chem. Commun. 2014, 50, 11934–11937.

[36]

Gao, G. G.; Cheng, P. S.; Mak, T. C. W. Acid-induced surface functionalization of polyoxometalate by enclosure in a polyhedral silver-alkynyl cage. J. Am. Chem. Soc. 2009, 131, 18257–18259.

[37]

Wang, Z.; Su, H. F.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D.; Zheng, L. S. Johnson solids: Anion-templated silver thiolate clusters capped by sulfonate. Chem.—Eur. J. 2018, 24, 1640–1650.

[38]

Jin, J. L.; Shen, Y. L.; Xie, Y. P.; Lu, X. Silver ethynide clusters constructed with fluorinated β-diketonate ligands. CrystEngComm 2018, 20, 2036–2042.

[39]
Tang, K. ; Xie, X. ; Zhao, L. ; Zhang, Y. Jin, X. Synthesis and crystal structure of {[HNEt3]2n[Ag8Ag4/2(SC6H4tBu-4)12]n·nC2H5OH} and its reaction product with CS2. Eur. J. Inorg. Chem. 2004, 2004, 78–85.
DOI
[40]

Kilpatrick, A. F. R.; Green, J. C.; Turner, Z. R.; Buffet, J. C.; O’Hare, D. Zirconium arene triple-decker sandwich complexes: Synthesis, electronic structure and bonding. Chem. Commun. 2017, 53, 12048–12051.

[41]

Guo, L. Y.; Su, H. F.; Kurmoo, M.; Wang, X. P.; Zhao, Q. Q.; Lin, S. C.; Tung, C. H.; Sun, D.; Zheng, L. S. Multifunctional triple-decker inverse 12-metallacrown-4 sandwiching halides. ACS Appl. Mater. Interfaces 2017, 9, 19980–19987.

[42]

Liao, L. W.; Zhuang, S. L.; Wang, P.; Xu, Y. N.; Yan, N.; Dong, H. W.; Wang, C. M.; Zhao, Y.; Xia, N.; Li, J. et al. Quasi-dual-packed-kerneled Au49(2, 4-DMBT)27 nanoclusters and the influence of kernel packing on the electrochemical gap. Angew. Chem. , Int. Ed. 2017, 56, 12644–12648.

[43]

Qu, M.; Zhang, F. Q.; Wang, D. H.; Li, H.; Hou, J. J.; Zhang, X. M. Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem. , Int. Ed. 2020, 59, 6507–6512.

[44]

Cui, P.; Hu, H. S.; Zhao, B.; Miller, J. T.; Cheng, P.; Li, J. A multicentre-bonded [ZnI]8 cluster with cubic aromaticity. Nat. Commun. 2015, 6, 6331.

[45]

Verma, G.; Forrest, K.; Carr, B. A.; Vardhan, H.; Ren, J. Y.; Pham, T.; Space, B.; Kumar, S.; Ma, S. Q. Indium-organic framework with soc topology as a versatile catalyst for highly efficient one-pot strecker synthesis of α-aminonitriles. ACS Appl. Mater. Interfaces 2021, 13, 52023–52033.

[46]

Shi, W. Q.; Guan, Z. J.; Li, J. J.; Han, X. S.; Wang, Q. M. Site-specific doping of silver atoms into a Au25 nanocluster as directed by ligand binding preferences. Chem. Sci. 2022, 13, 5148–5154.

[47]

AbdulHalim, L. G.; Ashraf, S.; Katsiev, K.; Kirmani, A. R.; Kothalawala, N.; Anjum, D. H.; Abbas, S.; Amassian, A.; Stellacci, F.; Dass, A. et al. A scalable synthesis of highly stable and water dispersible Ag44(SR)30 nanoclusters. J. Mater. Chem. A 2013, 1, 10148–10154.

[48]

Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem. , Int. Ed. 2021, 60, 5225–5229.

[49]

Zhao, J. Q.; Han, M. F.; Zhao, X. J.; Ma, Y. Y.; Jing, C. Q.; Pan, H. M.; Li, D. Y.; Yue, C. Y.; Lei, X. W. Structural dimensionality modulation toward enhanced photoluminescence efficiencies of hybrid lead-free antimony halides. Adv. Opt. Mater. 2021, 9, 2100556.

[50]

Xu, Y. X.; Chai, X. C.; Yang, W. T.; Hu, J. R.; Chen, J. N.; He, Y. B. Formation of a stable guanidinium-formamidinium phase in bismuth chloride perovskites with broadband emission. Chem. Mater. 2021, 33, 3258–3265.

[51]

Wang, Z.; Li, X. Y.; Liu, L. W.; Yu, S. Q.; Feng, Z. Y.; Tung, C. H.; Sun, D. Beyond clusters: Supramolecular networks self-assembled from nanosized silver clusters and inorganic anions. Chem.—Eur. J. 2016, 22, 6830–6836.

[52]

Li, X. Y.; Su, H. F.; Yu, K.; Tan, Y. Z.; Wang, X. P.; Zhao, Y. Q.; Sun, D.; Zheng, L. S. A platonic solid templating Archimedean solid: An unprecedented nanometre-sized Ag37 cluster. Nanoscale 2015, 7, 8284–8288.

Polyoxometalates
Article number: 9140028
Cite this article:
Gao J-P, Qi Z, Zhang F-Q, et al. [MoO4]2−-templated D4h-symmetric sandwich Ag13 nanocluster coprotected with thiolate and phosphine. Polyoxometalates, 2023, 2(2): 9140028. https://doi.org/10.26599/POM.2023.9140028

2009

Views

341

Downloads

0

Crossref

Altmetrics

Received: 01 March 2023
Revised: 24 April 2023
Accepted: 30 April 2023
Published: 11 May 2023
© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return