Journal Home > Volume 2 , Issue 2

Silver-modified polyniobotungstate based on Nb/W mixed-addendum polyoxometalate with formula Ag9[P2W15Nb3O62]·21H2O (Ag-Nb/W) was synthesized and then characterized by various analytical and spectral techniques. Ag-Nb/W was proven to be an efficient photocatalyst for the oxidative ring opening of 2-phenylimidazo[1,2-a]pyridine via the simultaneous cleavage of C–C and C–N bonds. Under visible light (430–440 nm) and with oxygen as an oxidant at room temperature, Ag-Nb/W can catalyze the rapid transformation of various 2-phenylimidazo[1,2-a]pyridine derivatives to produce the corresponding oxidative ring-opening product N-(pyridin-2-yl) amides in good isolated yields ranging from 65% to 78%. As a heterogeneous photocatalyst, Ag-Nb/W showed excellent sustainability and recyclability in the recycling experiments. Infrared (IR) spectroscopy and X-ray diffraction (XRD) analysis indicated that Ag-Nb/W could retain its integrity after catalysis. A possible mechanism involving the singlet oxygen for the catalytic reaction was proposed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Silver-modified polyniobotungstate for the visible light-induced simultaneous cleavage of C–C and C–N bonds

Show Author's information Shujun Li1 ( )Na Li1Gang Li1Yubin Ma1Mengyao Huang1Qingchun Xia1Qianyi Zhao1 ( )Xuenian Chen1,2 ( )
School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, China
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

Silver-modified polyniobotungstate based on Nb/W mixed-addendum polyoxometalate with formula Ag9[P2W15Nb3O62]·21H2O (Ag-Nb/W) was synthesized and then characterized by various analytical and spectral techniques. Ag-Nb/W was proven to be an efficient photocatalyst for the oxidative ring opening of 2-phenylimidazo[1,2-a]pyridine via the simultaneous cleavage of C–C and C–N bonds. Under visible light (430–440 nm) and with oxygen as an oxidant at room temperature, Ag-Nb/W can catalyze the rapid transformation of various 2-phenylimidazo[1,2-a]pyridine derivatives to produce the corresponding oxidative ring-opening product N-(pyridin-2-yl) amides in good isolated yields ranging from 65% to 78%. As a heterogeneous photocatalyst, Ag-Nb/W showed excellent sustainability and recyclability in the recycling experiments. Infrared (IR) spectroscopy and X-ray diffraction (XRD) analysis indicated that Ag-Nb/W could retain its integrity after catalysis. A possible mechanism involving the singlet oxygen for the catalytic reaction was proposed.

Keywords: photocatalyst, polyoxometalates, polyniobotungstate, bond cleavage

References(52)

[1]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[2]

Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.

[3]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[4]

Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.

[5]

Yamase, T. Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–326.

[6]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[7]

Yang, G. P.; Li, K.; Hu, C. W. Recent advances in uranium-containing polyoxometalates. Inorg. Chem. Front. 2022, 9, 5408.

[8]

Lόpez, X.; Carbό, J. J.; Bo, C.; Poblet, J. M. Structure, properties and reactivity of polyoxometalates: A theoretical perspective. Chem. Soc. Rev. 2012, 41, 7537–7571.

[9]

Liu, Y.; Tang, C. S.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y. S.; Yi, H.; Fu, Y. K.; Li, L. Polyoxometalate@metal-organic framework composites as effective photocatalysts. ACS Catal. 2021, 11, 13374–13396.

[10]

Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.

[11]

Li, S. J.; Liu, S. M.; Liu, S. X.; Liu, Y. W.; Tang, Q.; Shi, Z.; Ouyang, S. X.; Ye, J. H. {Ta12}/{Ta16} cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity. J. Am. Chem. Soc. 2012, 134, 19716–19721.

[12]

Zhang, M.; Xin, X.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B Environ. 2022, 303, 120893.

[13]

Li, X. X.; Zhang, L.; Liu, J.; Yuan, L.; Wang, T.; Wang, J. Y.; Dong, L. Z.; Huang, K.; Lan, Y. Q. Design of crystalline reduction-oxidation cluster-based catalysts for artificial photosynthesis. JACS Au 2021, 1, 1288–1295.

[14]

Li, X. X.; Zhang, L.; Yuan, L.; Wang, T.; Dong, L. Z.; Huang, K.; Liu, J.; Lan, Y. Q. Constructing crystalline redox catalyst to achieve efficient CO2 photoreduction reaction in water vapor. Chem. Eng. J. 2022, 442, 136157.

[15]

Yao, S. J.; Li, N.; Liu, J.; Dong, L. Z.; Liu, J. J.; Xin, Z. F.; Li, D. S.; Li, S. L.; Lan, Y. Q. Ferrocene-functionalized crystalline biomimetic catalysts for efficient CO2 photoreduction. Inorg. Chem. 2022, 61, 2167–2173.

[16]

Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.

[17]

Lan, J.; Wang, Y.; Huang, B.; Xiao, Z. C.; Wu, P. F. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv. 2021, 3, 4646–4658.

[18]

Lai, S. Y.; Ng, K. H.; Cheng, C. K.; Nur, H.; Nurhadi, M.; Arumugam, M. Photocatalytic remediation of organic waste over keggin-based polyoxometalate materials: A review. Chemosphere 2021, 263, 128244.

[19]

Li, H. L.; Zhang, M.; Lian, C.; Lang, Z. L.; Lv, H. J.; Yang, G. Y. Ring-shaped polyoxometalate built by {Mn4PW9} and PO4 units for efficient visible-light-driven hydrogen evolution. CCS Chem. 2021, 3, 2095–2103.

[20]

Xia, Z. N.; Wang, L. B.; Zhang, Q.; Li, F. Y.; Xu, L. Fast degradation of phenol over porphyrin-polyoxometalate composite photocatalysts under visible light. Polyoxometalates 2022, 1, 9140001.

[21]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[22]

Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.

[23]

Qin, K. J.; Zang, D. J.; Wei, Y. G. Polyoxometalates based compounds for green synthesis of aldehydes and ketones. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.107999.

[24]

Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2001, 30, 62–69.

[25]

Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal. 2018, 8, 10809–10825.

[26]

Streb, C.; Kastner, K.; Tucher, J. Polyoxometalates in photocatalysis. Phys. Sci. Rev. 2019, 4, 20170177.

[27]

Li, H. F.; Yang, M. N.; Yuan, Z. L.; Sun, Y. H.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Construction of one Ru2W12-cluster and six lacunary Keggin tungstoarsenate leading to the larger Ru-containing polyoxometalate photocatalyst. Chin. Chem. Lett. 2022, 33, 4664–4668.

[28]

Ravelli, D.; Protti, S.; Fagnoni, M. Decatungstate anion for photocatalyzed “window ledge” reactions. Acc. Chem. Res. 2016, 49, 2232–2242.

[29]

Lykakis, I. N.; Tanielian, C.; Seghrouchni, R.; Orfanopoulos, M. Mechanism of decatungstate photocatalyzed oxygenation of aromatic alcohols: Part II. Kinetic isotope effects studies. J. Mol. Catal. A Chem. 2007, 262, 176–184.

[30]

Liu, Y.-F.; Hu, C.-W.; Yang, G.-P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.108097.

[31]

Huang, X. Q.; Liu, S.; Liu, G.; Tao, Y. W.; Wang, C. R.; Zhang, Y. L.; Li, Z.; Wang, H. W.; Zhou, Z.; Shen, G. D. et al. An unprecedented 2-fold interpenetrated lvt open framework built from Zn6 ring seamed trivacant polyoxotungstates used for photocatalytic synthesis of pyridine derivatives. Appl. Catal. B Environ. 2023, 323, 122134.

[32]

Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem., Int. Ed. 2021, 60, 13310–13316.

[33]

Ma, Y. B.; Gao, F.; Xiao, W. R.; Li, N.; Li, S. J.; Yu, B.; Chen, X. N. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin. Chem. Lett. 2022, 33, 4395–4399.

[34]

Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Montanaro, S.; Fagnoni, M. Efficient C-H/C-N and C-H/C-CO-N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org. Lett. 2013, 15, 2554–2557.

[35]

Li, S. J.; Li, G.; Ji, P. P.; Zhang, J. W.; Liu, S. X.; Zhang, J.; Chen, X. N. A giant Mo/Ta/W ternary mixed-addenda polyoxometalate with efficient photocatalytic activity for primary amine coupling. ACS Appl. Mater. Interfaces 2019, 11, 43287–43293.

[36]

Sarver , P. J.; Bacauanu , V.; Schultz , D. M.; DiRocco, D. A.; Lam, Y. H.; Sherer, E. C.; MacMillan, D. W. C. The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)-H trifluoromethylation. Nat. Chem. 2020, 12, 459–467.

[37]

Jiao, J. C.; Yan, X. M.; Xing, S. Z.; Zhang, T.; Han, Q. X. Design of a polyoxometalate-based metal-organic framework for photocatalytic C(sp3)-H oxidation of toluene. Inorg. Chem. 2022, 61, 2421–2427.

[38]

Zhao, W. Z.; Zeng, X. H.; Huang, L.; Qiu, S. Q.; Xie, J. Y.; Yu, H.; Wei, Y. G. Oxidative dehydrogenation of hydrazines and diarylamines using a polyoxomolybdate-based iron catalyst. Chem. Commun. 2021, 57, 7677–7680.

[39]

Nodwell, M. B.; Yang, H.; Čolović, M.; Yuan, Z. L.; Merkens, H.; Martin, R. E.; Bénard, F.; Schaffer, P.; Britton, R. 18F-fluorination of unactivated C-H bonds in branched aliphatic amino acids: Direct synthesis of oncological positron emission tomography imaging agents. J. Am. Chem. Soc. 2017, 139, 3595–3598.

[40]

Chen, F.; Wang, T.; Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 2014, 114, 8613–8661.

[41]

Souillart, L.; Cramer, N. Catalytic C-C bond activations via oxidative addition to transition metals. Chem. Rev. 2015, 115, 9410–9464.

[42]

Yang, G. P.; Li, K.; Liu, W.; Zeng, K.; Liu, Y. F. Copper-catalyzed aerobic oxidative C-C bond cleavage of simple ketones for the synthesis of amides. Org. Biomol. Chem. 2020, 18, 6958–6964.

[43]

Chen, W. M.; Xie, X.; Zhang, J.; Qu, J.; Luo, C.; Lai, Y. Z.; Jiang, F.; Yu, H.; Wei, Y. G. Oxidative carbon-carbon bond cleavage of 1,2-diols to carboxylic acids/ketones by an inorganic-ligand supported iron catalyst. Green Chem. 2021, 23, 9140–9146.

[44]

Tang, C. H.; Jiao, N. Copper-catalyzed aerobic oxidative C-C bond cleavage for C-N bond formation: From ketones to amides. Angew. Chem., Int. Ed. 2014, 53, 6528–6532.

[45]

Ritu; Sharma, C.; Kumar, S.; Jain, N. Singlet oxygen mediated dual C-C and C-N bond cleavage in visible light. Org. Biomol. Chem. 2020, 18, 2921–2928.

[46]

Dreis, A. M.; Douglas, C. J. Catalytic carbon-carbon σ bond activation: An intramolecular carbo-acylation reaction with acylquinolines. J. Am. Chem. Soc. 2009, 131, 412–413.

[47]

Yan, K. L.; Yang, D. S.; Wei, W.; Li, G. Q.; Sun, M. Y.; Zhang, Q. Y.; Tian, L. J.; Wang, H. Metal-free TBHP-mediated oxidative ring openings of 2-arylimidazopyridines via regioselective cleavage of C-C and C-N bonds. RSC Adv. 2015, 5, 100102–100105.

[48]

Chen, Z. W.; Wen, X. W.; Qian, Y. P.; Liang, P.; Liu, B. T.; Ye, M. Ce(III)-catalyzed highly efficient synthesis of pyridyl benzamides from aminopyridines and nitroolefins without external oxidants. Org. Biomol. Chem. 2018, 16, 1247–1251.

[49]

Xu, F. Z.; Wang, Y. Y.; Xun, X. W.; Huang, Y.; Jin, Z. C.; Song, B. A.; Wu, J. Diverse oxidative C(sp2)-N bond cleavages of aromatic fused imidazoles for synthesis of α-ketoamides and N-(pyridin-2-yl)arylamides. J. Org. Chem. 2019, 84, 8411–8422.

[50]

Gong, J.; Chen, Y. G.; Qu, L. Y.; Liu, Q. Preparation and characterization of new peroxyniobium-containing phosphotungstates with Dawson structures. Polyhedron 1996, 15, 2273–2277.

[51]

Romand, M.; Roubin, M.; Deloume, J. P. ESCA studies of some copper and silver selenides. J. Electron Spectrosc. Relat. Phenom. 1978, 13, 229–242.

[52]

Kuznetsova, A. A.; Volchek, V. V.; Yanshole, V. V.; Fedorenko, A. D.; Kompankov, N. B.; Kokovkin, V. V.; Gushchin, A. L.; Abramov, P. A.; Sokolov, M. N. Coordination of Pt(IV) by {P8W48} macrocyclic inorganic cavitand: Structural, solution, and electrochemical studies. Inorg. Chem. 2022, 61, 14560–14567.

File
0024_ESM.pdf (5 MB)
0024_ESM_LG-20191018.cif (518 KB)
0024_ESM_checkcif.pdf (150.1 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 November 2022
Revised: 06 January 2023
Accepted: 19 January 2023
Published: 03 March 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22171073 and U1804253) and the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 23HASTIT005).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return