Graphical Abstract

Polyoxometalate (POM)-based lanthanide-oxo clusters (LnOCs) are a class of polynuclear lanthanide–oxygen complexes formed by polyoxometalate stabilization through oxygen bridges in which POMs can be viewed as multidentate inorganic ligands. POM-based LnOCs have received interest owing to their interesting structures and potential applications. In this paper, we summarize the classification, synthesis strategies, and properties of POM-based LnOCs. POM-based LnOCs are classified into three main categories according to their metal core element type and quantity: pure 4f clusters, 5d–4f clusters, and 3d–4f clusters. Their synthetic strategies are divided into four categories based on the source of the POM involved in the structural assembly: the lacunary POMs ligand-directed method, the in-situ transformation of lacunary POMs ligand-directed method, the in-situ generation of lacunary POMs ligand-directed method, and mixed synthesis strategies. In addition, the single-molecule magnets of POM-based LnOCs and their proton conduction properties are summarized.
Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamäki, A.; Layfield, R. A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.
Fu, X.; Fu, S.; Lu, Q.; Zhang, J.; Wan, P. P.; Liu, J. L.; Zhang, Y.; Chen, C. H.; Li, W.; Wang, H. D. et al. Excitation energy mediated cross-relaxation for tunable upconversion luminescence from a single lanthanide ion. Nat. Commun. 2022, 13, 4741.
Xu, Q. F.; Liu, B. L.; Ye, M. Y.; Zhuang, G. L.; Long, L. S.; Zheng, L. S. Gd(OH)F2: A promising cryogenic magnetic refrigerant. J. Am. Chem. Soc. 2022, 144, 13787–13793.
Schroll, C. A.; Chatterjee, S.; Levitskaia, T. G.; Heineman, W. R.; Bryan, S. A. Electrochemistry and Spectroelectrochemistry of Europium (III) Chloride in 3LiCl-2KCl from 643 to 1123 K. Anal. Chem. 2013, 85, 9924–9931.
Li, X. Z.; Tian, C. B.; Sun, Q. F. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem. Rev. 2022, 122, 6374–6458.
Sahoo, S.; Mondal, S.; Sarma, D. Luminescent lanthanide metal organic frameworks (LnMOFs): A versatile platform towards organomolecule sensing. Coord. Chem. Rev. 2022, 470, 214707.
Chen, R.; Chen, C. L.; Du, M. H.; Wang, X.; Wang, C.; Long, L. S.; Kong, X. J.; Zheng, L. S. Soluble lanthanide-transition-metal clusters Ln36Co12 as effective molecular electrocatalysts for water oxidation. Chem. Commun. (Camb.) 2021, 57, 3611–3614.
Du, M. H.; Chen, L. Q.; Jiang, L. P.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Counterintuitive lanthanide hydrolysis-induced assembly mechanism. J. Am. Chem. Soc. 2022, 144, 5653–5660.
Du, M. H.; Wang, D. H.; Wu, L. W.; Jiang, L. P.; Li, J. P.; Long, L. S.; Zheng, L. S.; Kong, X. J. Hierarchical assembly of coordination macromolecules with atypical geometries: Gd44Co28 crown and Gd95Co60 cage. Angew. Chem., Int. Ed. 2022, 61, e202200537.
Liu, W. D.; Li, G. J.; Xu, H.; Du, M. H.; Long, L. S.; Zheng, L. S.; Kong, X. J. Photoluminescence of lanthanide-titanium-oxo clusters Eu9Ti2 and Tb9Ti2 based on a β-diketone ligand. Inorg. Chem. 2022, 61, 9849–9854.
Wang, X.; Wang, S. Q.; Chen, J. N.; Jia, J. H.; Wang, C.; Paillot, K.; Breslavetz, I.; Long, L. S.; Zheng, L. S.; Rikken, G. L. J. A. et al. Magnetic 3d-4f chiral clusters showing multimetal site magneto-chiral dichroism. J. Am. Chem. Soc. 2022, 144, 8837–8847.
Weng, Z. Z.; Xie, J.; Huang, K. X.; Li, J. P.; Long, L. S.; Kong, X. J.; Zheng, L. S. Asymmetric cyanosilylation of aldehydes by a lewis acid/base synergistic catalyst of chiral metal clusters. Inorg. Chem. 2022, 61, 4121–4129.
Chen, R.; Hong, Z. F.; Zhao, Y. R.; Zheng, H.; Li, G. J.; Zhang, Q. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Ligand-dependent luminescence properties of lanthanide-titanium oxo clusters. Inorg. Chem. 2019, 58, 15008–15012.
Chen, R.; Yan, Z. H.; Kong, X. J.; Long, L. S.; Zheng, L. S. Integration of lanthanide-transition-metal clusters onto CdS surfaces for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 16796–16800.
Chen, R.; Zhuang, G. L.; Wang, Z. Y.; Gao, Y. J.; Li, Z.; Wang, C.; Zhou, Y.; Du, M. H.; Zeng, S. Y.; Long, L. S. et al. Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. Natl. Sci. Rev. 2021, 8, nwaa234.
Jin, P. B.; Yu, K. X.; Luo, Q. C.; Liu, Y. Y.; Zhai, Y. Q.; Zheng, Y. Z. Tetraanionic arachno-carboranyl ligand imparts strong axiality to terbium(III) single-molecule magnets. Angew. Chem., Int. Ed. 2022, 61, e202203285.
Zhang, H. L.; Zhai, Y. Q.; Nojiri, H.; Schröder, C.; Hsu, H. K.; Chan, Y. T.; Fu, Z. D.; Zheng, Y. Z. {ScnGdn} heterometallic rings: Tunable ring topology for spin-wave excitations. J. Am. Chem. Soc. 2022, 144, 15193–15202.
Chen, S. S.; Su, H. F.; Long, L. S.; Zheng, L. S.; Kong, X. J. Hydrolysis-promoted building block assembly: Structure transformation from Y12 wheel and Y34 ship to Y60 cage. Inorg. Chem. 2021, 60, 16922–16926.
Du, M. H.; Xu, S. H.; Li, G. J.; Xu, H.; Lin, Y.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Modification of multi-component building blocks for assembling giant chiral lanthanide-titanium molecular rings. Angew. Chem., Int. Ed. 2022, 61, e202116296.
Huang, W. M.; Chen, W. M.; Bai, Q. X.; Zhang, Z.; Feng, M.; Zheng, Z. P. Anion-guided stepwise assembly of high-nuclearity lanthanide hydroxide clusters. Angew. Chem., Int. Ed. 2022, 61, e202205385.
Pan, Z. H.; Weng, Z. Z.; Kong, X. J.; Long, L. S.; Zheng, L. S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coord. Chem. Rev. 2022, 457, 214419.
Zheng, X. Y.; Kong, X. J.; Zheng, Z. P.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers. Acc. Chem. Res. 2018, 51, 517–525.
Zheng, X. Y.; Xie, J.; Kong, X. J.; Long, L. S.; Zheng, L. S. Recent advances in the assembly of high-nuclearity lanthanide clusters. Coord. Chem. Rev. 2019, 378, 222–236.
Das, V.; Kaushik, R.; Hussain, F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications. Coord. Chem. Rev. 2020, 413, 213271.
Fang, X. K.; Kögerler, P.; Speldrich, M.; Schilder, H.; Luban, M. A polyoxometalate-based single-molecule magnet with an S = 21/2 ground state. Chem. Commun. (Camb.) 2012, 48, 1218–1220.
Ma, X.; Yang, W.; Chen, L. J.; Zhao, J. W. Significant developments in rare-earth-containing polyoxometalate chemistry: Synthetic strategies, structural diversities and correlative properties. CrystEngComm 2015, 17, 8175–8197.
Meng, X.; Wang, H. N.; Song, S. Y.; Zhang, H. J. Proton-conducting crystalline porous materials. Chem. Soc. Rev. 2017, 46, 464–480.
Ogiwara, N.; Iwano, T.; Ito, T.; Uchida, S. Proton conduction in ionic crystals based on polyoxometalates. Coord. Chem. Rev. 2022, 462, 214524.
Yang, P.; Alsufyani, M.; Emwas, A. H.; Chen, C. Q.; Khashab, N. M. Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: Enhanced proton conductivity via metal-oxo cluster within cluster assemblies. Angew. Chem., Int. Ed. 2018, 57, 13046–13051.
Boskovic, C. Rare earth polyoxometalates. Acc. Chem. Res. 2017, 50, 2205–2214.
Wang, Z. M.; Xin, X.; Zhang, M.; Li, Z.; Lv, H. J.; Yang, G. Y. Recent advances of mixed-transition-metal-substituted polyoxometalates. Sci. China Chem. 2022, 65, 1515–1525.
Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.
Zhao, J. W.; Li, Y. Z.; Chen, L. J.; Yang, G. Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Commun. (Camb.) 2016, 52, 4418–4445.
Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.
Chen, X. L.; Zhou, Y.; Roy, V. A. L.; Han, S. T. Evolutionary metal oxide clusters for novel applications: Toward high-density data storage in nonvolatile memories. Adv. Mater. 2018, 30, 1703950.
Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.
Sun, M.; Zhang, J. Z.; Putaj, P.; Caps, V.; Lefebvre, F.; Pelletier, J.; Basset, J. M. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds. Chem. Rev. 2014, 114, 981–1019.
Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.
Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.
Zhao, H. Y.; Li, Y. Z.; Zhao, J. W.; Wang, L.; Yang, G. Y. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord. Chem. Rev. 2021, 443, 213966.
Peacock, R. D.; Weakley, T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J. Chem. Soc. A 1971, 1836–1839
Peacock, R. D.; Weakley, T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part Ⅱ. Electronic spectra:A metal-ligand charge-transfer transition of cerium (Ⅲ). J. Chem. Soc. A 1971, 1937–1940
Lin, Y. D.; Ge, R.; Tian, C. B.; Sun, C.; Sun, Y. Q.; Zeng, Q. X.; Li, X. X.; Zheng, S. T. 3d-4f Heterometallic cluster incorporated polyoxoniobates with magnetic properties. Chem. Commun. (Camb.) 2021, 57, 8624–8627.
Ribó, E. G.; Bell, N. L.; Long, D. L.; Cronin, L. Engineering highly reduced molybdenum polyoxometalates via the incorporation of d and f block metal ions. Angew. Chem., Int. Ed. 2022, 61, e202201672.
Jin, L.; Li, X. X.; Qi, Y. J.; Niu, P. P.; Zheng, S. T. Giant hollow heterometallic polyoxoniobates with sodalite-type lanthanide-tungsten-oxide cages: Discrete nanoclusters and extended frameworks. Angew. Chem., Int. Ed. 2016, 55, 13793–13797.
Sadakane, M.; Dickman, M. H.; Pope, M. T. Controlled assembly of polyoxometalate chains from lacunary building blocks and lanthanide-cation linkers. Angew. Chem., Int. Ed. 2000, 39, 2914–2916.
Ibrahim, M.; Mbomekallé, I. M.; De Oliveira, P.; Baksi, A.; Carter, A. B.; Peng, Y.; Bergfeldt, T.; Malik, S.; Anson, C. E. Syntheses, crystal structure, electrocatalytic, and magnetic properties of the monolanthanide-containing germanotungstates [Ln(H2O)nGe W11O39]5− (Ln = Dy, Er, n = 4, 3). ACS Omega 2019, 4, 21873–21882.
Cañón-Mancisidor, W.; Zapata-Lizama, M.; Hermosilla-Ibáñez, P.; Cruz, C.; Venegas-Yazigi, D.; Espallargas, G. M. Hybrid organic-inorganic mononuclear lanthanoid single ion magnets. Chem. Commun. (Camb.) 2019, 55, 14992–14995.
Jing, J. X.; Shi, N.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. An inorganic-organic hybrid polyoxotungstogermanate based on [Ln(α-GeW11O39)2] dimer and dimethylammonium: Synthesis, crystal structure and photoluminescence property. J. Mol. Struct. 2022, 1250, 131686.
Mougharbel, A. S.; Bhattacharya, S.; Bassil, B. S.; Rubab, A.; Van Leusen, J.; Kögerler, P.; Wojciechowski, J.; Kortz, U. Lanthanide-containing 22-tungsto-2-germanates [Ln(GeW11O39)2]13−: Synthesis, structure, and magnetic properties. Inorg. Chem. 2020, 59, 4340–4348.
Wan, R.; Ma, P. T.; Han, M. D.; Zhang, D. D.; Zhang, C.; Niu, J. Y.; Wang, J. P. Discovery and isolation of the trans-isomers of two 1:2-type lanthanide-containing monolacunary Dawson-type tungstophosphates: [LnIII(α2-P2W17O61)2]17− (Ln = La, Ce). Dalton Trans. 2017, 46, 5398–5405.
Tanuhadi, E.; Al-Sayed, E.; Roller, A.; Čipčić-Paljetak, H.; Verbanac, D.; Rompel, A. Synthesis, characterization, and phosphoesterase activity of a series of 4f- and 4d-sandwich-type germanotungstates [(n-C4H9)4N]l/mH2[(M(H2O)3)(γ-GeW10O35)2](M = CeIII, NdIII, GdIII, ErIII, l = 7; ZrIV, m = 6). Inorg. Chem. 2020, 59, 14078–14084.
Wang, W. Y.; Izarova, N. V.; Van Leusen, J.; Kögerler, P. CeIII-functionalized polyoxotungstates: Discrete vs. extended architectures. Cryst. Growth Des. 2019, 19, 4860–4870.
Liu, L. Z.; Li, F. Y.; Xu, L.; Liu, X. Z.; Gao, G. G. Magnetic relaxation behavior of lanthanide substituted Dawson-type tungstoarsenates. J. Solid State Chem. 2010, 183, 350–355.
Huo, Y.; Chen, Y. C.; Wu, S. G.; Liu, J. L.; Jia, J. H.; Chen, W. B.; Wang, B. L.; Zhang, Y. Q.; Tong, M. L. Effect of bridging ligands on magnetic behavior in dinuclear dysprosium cores supported by polyoxometalates. Inorg. Chem. 2019, 58, 1301–1308.
Ibrahim, M.; Baksi, A.; Peng, Y.; Al-Zeidaneen, F. K.; Mbomekalle, I. M.; De Oliveira, P.; Anson, C. E. Synthesis, characterization, electrochemistry, photoluminescence and magnetic properties of a dinuclear erbium(III)-containing monolacunary dawson-type tungstophosphate: [{Er(H2O)(CH3COO)(P2W17O61)}2]16−. Molecules 2020, 25, 4229.
Liu, J. C.; Yu, J.; Han, Q.; Wen, Y.; Chen, L. J.; Zhao, J. W. First quadruple-glycine bridging mono-lanthanide-substituted borotungstate hybrids. Dalton Trans. 2016, 45, 16471–16484.
Ma, P. T.; Hu, F.; Wu, H. C.; Liu, X. P.; Wang, J. P.; Niu, J. Y. Luminescent dimeric polyoxotungstate [Ho(C4H2O6)(α-PW11O39)]216− with magnetism and reversible photochromism. J. Lumin. 2020, 217, 116760.
Niu, J. Y.; Wang, K. H.; Chen, H. N.; Zhao, J. W.; Ma, P. T.; Wang, J. P.; Li, M. X.; Bai, Y.; Dang, D. B. Assembly chemistry between lanthanide cations and monovacant keggin polyoxotungstates: Two types of lanthanide substituted phosphotungstates [{(α-PW11O39H)Ln(H2O)3}2]6− and [{(α-PW11O39)Ln(H2O)(η2,μ-1,1)-CH3COO}2]10−. Cryst. Growth Des. 2009, 9, 4362–4372.
Wang, X. H.; Liu, Y. J.; Jin, M. T.; Wu, Y. X.; Chen, L. J.; Zhao, J. W. Two families of rare-earth-substituted dawson-type monomeric and dimeric phosphotungstates functionalized by carboxylic ligands. Cryst. Growth Des. 2017, 17, 5295–5308.
Zhang, S. W.; Wang, Y.; Zhao, J. W.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Two types of oxalate-bridging rare-earth-substituted Keggin-type phosphotungstates {[(α-PW11O39)RE(H2O)]2(C2O4)}10− and {(α-x-PW10O38)RE2(C2O4)(H2O)2}3−. Dalton Trans. 2012, 41, 3764–3772.
Knoth, W. H.; Domaille, P. J.; Harlow, R. L. Heteropolyanions of the types M3(W9PO34)212− and MM'M''(W9PO34)212−: Novel coordination of nitrate and nitrite. Inorg. Chem. 1986, 25, 1577–1584.
Tomsa, A. R.; Muresan, L.; Koutsodimou, A.; Falaras, P.; Rusu, M. Synthesis and characterisation of two new lanthanide sandwich-type heteropolyoxometalates. Polyhedron 2003, 22, 2901–2909.
Giansiracusa, M. J.; Vonci, M.; Van Den Heuvel, W.; Gable, R. W.; Moubaraki, B.; Murray, K. S.; Yu, D. H.; Mole, R. A.; Soncini, A.; Boskovic, C. Carbonate-bridged lanthanoid triangles: Single-molecule magnet behavior, inelastic neutron scattering, and ab initio studies. Inorg. Chem. 2016, 55, 5201–5214.
Khoshnavazi, R.; Gholamyan, S. Sandwich-type polyoxoanions based on A-β-GeW9O3410−. Synthesis and characterization of [(A-β-GeW9O34)2(MOH2)3CO3]13− (M = Y3+, Sm3+, and Yb3+) polyoxoanions. J. Coord. Chem 2010, 63, 3365–3372.
Khoshnavazi, R.; Nicolò, F.; Rudbari, H. A.; Naseri, E.; Aminipour, A. Sandwich-type polyoxometalates of the later lanthanide ions. Syntheses and structures of [(A-XW9O34)2(H2OM)3CO3]11− (X = P5+, As5+) (M = Tb3+, Dy3+, Er3+). J. Coord. Chem 2013, 66, 1374–1383.
Khoshnavazi, R. ; Sadeghi, R. ; Bahrami, L. High stable sandwich-type polyoxometallates based on A-β-SiW9O3410−. Synthesis, chemical properties and characterization of [(A-β-SiW9O34)2(MOH2)3CO3]13− (M = Y3+ and Yb3+). Polyhedron 2008, 27, 1855–1859.
Kong, X. J.; Lin, Z. K.; Zhang, Z. M.; Zhang, T.; Lin, W. B. Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6411–6416.
Liu, Y. P.; Zhao, S. F.; Guo, S. X.; Bond, A. M.; Zhang, J.; Zhu, G. B.; Hill, C. L.; Geletii, Y. V. Electrooxidation of ethanol and methanol using the molecular catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−. J. Am. Chem. Soc. 2016, 138, 2617–2628.
Lv, H. J.; Guo, W. W.; Wu, K. F.; Chen, Z. Y.; Bacsa, J.; Musaev, D. G.; Geletii, Y. V.; Lauinger, S. M.; Lian, T. Q.; Hill, C. L. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14015–14018.
Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–346.
Dufaye, M.; Duval, S.; Nursiah, K.; Stoclet, G.; Trivelli, X.; Loiseau, T. Bottom-up synthesis of functionalized {Ce4(SiW9O34)2(L)2} polyoxometalates. CrystEngComm 2018, 20, 7144–7155.
Duval, S.; Béghin, S.; Falaise, C.; Trivelli, X.; Rabu, P.; Loiseau, T. Stabilization of tetravalent 4f (Ce), 5d (Hf), or 5f (Th, U) clusters by the [α-SiW9O34]10− polyoxometalate. Inorg. Chem. 2015, 54, 8271–8280.
Cai, Z. W.; Liu, B. X.; Yang, T.; Li, X. X.; Zheng, S. T. Syntheses and structures of the first two tetra-scandium substituted polyoxometalates. Inorg. Chem. Commun. 2017, 80, 1–5.
Wang, Y.; Sun, X. P.; Li, S. Z.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Synthesis and magnetic properties of tartrate-bridging rare-earth-containing polytungstoarsenate aggregates from an adaptive precursor [As2W19O67(H2O)]14−. Dalton Trans. 2015, 44, 733–738.
Suzuki, K.; Tang, F.; Kikukawa, Y.; Yamaguchi, K.; Mizuno, N. Visible-light-induced photoredox catalysis with a tetracerium-containing silicotungstate. Angew. Chem., Int. Ed. 2014, 53, 5356–5360.
Fang, X. K.; Anderson, T. M.; Benelli, C.; Hill, C. L. Polyoxometalate-supported Y- and YbIII-hydroxo/oxo clusters from carbonate-assisted hydrolysis. Chem.—Eur. J. 2005, 11, 712–718.
Zhang, Y.; Li, Y. M.; Pang, J. J.; Liu, Y. F.; Li, P.; Chen, L. J.; Zhao, J. W. Two penta-REIII encapsulated tetravacant dawson selenotungstates and nanoscale derivatives and their luminescence properties. Inorg. Chem. 2019, 58, 7078–7090.
Huo, Y. ; Chen, Y. C. ; Wu, S. G. ; Jia, J. H. ; Chen, W. B. ; Liu, J. L. ; Tong, M. L. pH-controlled assembly of organophosphonate-bridged dysprosium(III) single-molecule magnets based on polyoxometalates. Inorg. Chem 2018, 57, 6773–6777.
Ma, P. T.; Wan, R.; Wang, Y. Y.; Hu, F.; Zhang, D. D.; Niu, J. Y.; Wang, J. P. Coordination-driven self-assembly of a 2D graphite-like framework constructed from high-nuclear Ce10 cluster encapsulated polyoxotungstates. Inorg. Chem. 2016, 55, 918–924.
Ma, P. T.; Wan, R.; Si, Y. N.; Hu, F.; Wang, Y. Y.; Niu, J. Y.; Wang, J. P. Double-malate bridging tri-lanthanoid cluster encapsulated arsenotungstates: Syntheses, structures, luminescence and magnetic properties. Dalton Trans. 2015, 44, 11514–11523.
Hao, Y.; Zhong, L.; Li, H. H.; Zheng, S. T. Two lanthanide-substituted polyoxometalates featuring novel crescent-shaped Ln5 clusters: Structures, ion conductivities, and magnetic properties. Cryst. Growth Des. 2019, 19, 1329–1335.
Huo, Y.; Chen, Y. C.; Liu, J. L.; Jia, J. H.; Chen, W. B.; Wu, S. G.; Tong, M. L. A wheel-shaped Dy(III) single-molecule magnet supported by polyoxotungstates. Dalton Trans. 2017, 46, 16796–16801.
Dufaye, M.; Duval, S.; Stoclet, G.; Loiseau, T. Influence of pH on CeIV-[AsIIIW9O33]9− association for the formation of hexanuclear cerium(IV) oxo-hydroxo-clusters stabilized by trivacant polyanions. CrystEngComm 2020, 22, 371–380.
Duval, S.; Roussel, P.; Loiseau, T. Synthesis of a large dodecameric cerium cluster stabilized by the [SiW9O34]10− polyoxometalate. Inorg. Chem. Commun. 2017, 83, 52–54.
Matsunaga, S.; Inoue, Y.; Mihara, K.; Nomiya, K. Synthesis and crystal structure of hexacerium(IV) cluster-containing Keggin polyoxometalate trimer. Inorg. Chem. Commun. 2017, 80, 61–64.
Huo, Y.; Wan, R.; Ma, P. T.; Liu, J. L.; Chen, Y. C.; Li, D. D.; Niu, J. Y.; Wang, J. P.; Tong, M. L. Organophosphonate-bridged polyoxometalate-based dysprosium (III) single-molecule magnet. Inorg. Chem. 2017, 56, 12687–12691.
Ma, X. Y.; He, P. P.; Xu, B. J.; Lu, J. K.; Wan, R.; Wu, H. C.; Wang, Y.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Pyrazine dicarboxylate-bridged arsenotungstate: Synthesis, characterization, and catalytic activities in epoxidation of olefins and oxidation of alcohols. Dalton Trans. 2019, 48, 12956–12963.
Ritchie, C.; Baslon, V.; Moore, E. G.; Reber, C.; Boskovic, C. Sensitization of lanthanoid luminescence by organic and inorganic ligands in lanthanoid-organic-polyoxometalates. Inorg. Chem. 2012, 51, 1142–1151.
Ritchie, C.; Speldrich, M.; Gable, R. W.; Sorace, L.; Kögerler, P.; Boskovic, C. Utilizing the adaptive polyoxometalate [As2W19O67(H2O)]14- to support a polynuclear lanthanoid-based single-molecule magnet. Inorg. Chem. 2011, 50, 7004–7014.
Xiong, J. ; Yang, Z. X. ; Ma, P. T. ; Lin, D. M. ; Zheng, Q. J. ; Huo, Y. pH-controlled assembly of two polynuclear Dy(III)-containing polytungstoarsenates with magnetic and luminescence properties. Inorg. Chem 2021, 60, 7519–7526.
Chen, H. H.; Xiao, Z. K.; Yan, B.; Wu, H. C.; Ma, P. T.; Wang, J. P.; Niu, J. Y. H-shaped oxalate-bridging lanthanoid-incorporated arsenotungstates. Dalton Trans. 2020, 49, 15731–15738.
Ma, P. T.; Hu, F.; Huo, Y.; Zhang, D. D.; Zhang, C.; Niu, J. Y.; Wang, J. P. Magnetoluminescent bifunctional dysprosium-based phosphotungstates with synthesis and correlations between structures and properties. Cryst. Growth Des. 2017, 17, 1947–1956.
Howell, R. C.; Perez, F. G.; Jain, S.; Horrocks, W. D. Jr.; Rheingold, A. L. ; Francesconi, L. C. A new type of heteropolyoxometalates formed from lacunary polyoxotungstate ions and europium or yttrium cations. Angew. Chem., Int. Ed 2001, 40, 4031–4034.
Hussain, F.; Gable, R. W.; Speldrich, M.; Kögerler, P.; Boskovic, C. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes. Chem. Commun. (Camb.). 2009, 328–330
Li, Z.; Li, X. X.; Yang, T.; Cai, Z. W.; Zheng, S. T. Four-shell polyoxometalates featuring high-nuclearity Ln26 clusters: Structural transformations of nanoclusters into frameworks triggered by transition-metal ions. Angew. Chem., Int. Ed. 2017, 56, 2664–2669.
Liu, J. H.; Zhang, R. T.; Zhang, J.; Zhao, D.; Li, X. X.; Sun, Y. Q.; Zheng, S. T. A series of 3D porous lanthanide-substituted polyoxometalate frameworks based on rare hexadecahedral {Ln6W8O28} heterometallic cage-shaped cluster. Inorg. Chem. 2019, 58, 14734–14740.
Wassermann, K.; Dickman, M. H.; Pope, M. T. Self-assembly of supramolecular polyoxometalates: The compact, water-soluble heteropolytungstate anion [AsⅢ12CeⅢ16(H2O)36W148O524]76−. Angew. Chem., Int. Ed. 1997, 36, 1445–1448.
Jiang, J.; Liu, L. L.; Liu, G. P.; Wang, D.; Zhang, Y.; Chen, L. J.; Zhao, J. W. Organic-inorganic hybrid cerium-encapsulated selenotungstate including three building blocks and its electrochemical detection of dopamine and paracetamol. Inorg. Chem. 2020, 59, 15355–15364.
Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two unusual nanosized Nd3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments. Nanoscale 2020, 12, 16091–16101.
Li, H. L.; Liu, Y. J.; Li, Y. M.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Unprecedented selenium and lanthanide simultaneously bridging selenotungstate aggregates stabilized by four tetra-vacant dawson-like {Se2W14} units. Chem.—Asian J. 2018, 13, 2897–2907.
Liu, J. L.; Wang, D.; Xu, X.; Li, H. L.; Zhao, J. W.; Chen, L. J. Multi-nuclear rare-earth-implanted tartaric acid-functionalized selenotungstates and their fluorescent and magnetic properties. Inorg. Chem. 2021, 60, 2533–2541.
Liu, L. L.; Jiang, J.; Cui, L. M.; Zhao, J. W.; Cao, X. H.; Chen, L. J. Double trigonal pyramidal {SeO3} groups bridged 2-picolinic acid modified cerium-inlaid polyoxometalate including mixed selenotungstate subunits for electrochemically sensing ochratoxin A. Inorg. Chem. 2022, 61, 1949–1960.
Liu, Y. J.; Li, H. L.; Lu, C. T.; Gong, P. J.; Ma, X. Y.; Chen, L. J.; Zhao, J. W. Organocounterions-assisted and pH-controlled self-assembly of five nanoscale high-nuclear lanthanide substituted heteropolytungstates. Cryst. Growth Des. 2017, 17, 3917–3928.
Zhang, Y.; Jiang, J.; Liu, Y. F.; Li, P.; Liu, Y.; Chen, L. J.; Zhao, J. W. Multi-praseodymium-and-tungsten bridging octameric tellurotungstate and its 2D honeycomb composite film for detecting estrogen. Nanoscale 2020, 12, 10842–10853.
Liu, L. L.; Jiang, J.; Liu, X. Y.; Liu, G. P.; Wang, D.; Chen, L. J.; Zhao, J. W. First series of mixed (PIII, SeIV)-heteroatomoriented rare-earth-embedded polyoxotungstates containing distinct building blocks. Inorg. Chem. Front. 2020, 7, 4640–4651.
Han, L. Z.; Jiao, C. Q.; Chen, W. C.; Shao, K. Z.; Jin, L. Y.; Su, Z. M. Assembly of tetra-nuclear YbIII-containing selenotungstate clusters: Synthesis, structures, and magnetic properties. Dalton Trans. 2021, 50, 11535–11541.
Chen, W. C.; Yan, L. K.; Wu, C. X.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Assembly of keggin-/dawson-type polyoxotungstate clusters with different metal units and SeO32- heteroanion templates. Cryst. Growth Des. 2014, 14, 5099–5110.
Han, Q.; Wen, Y.; Liu, J. C.; Zhang, W.; Chen, L. J.; Zhao, J. W. Rare-earth-incorporated tellurotungstate hybrids functionalized by 2-picolinic acid ligands: Syntheses, structures, and properties. Inorg. Chem. 2017, 56, 13228–13240.
Li, H. L.; Liu, Y. J.; Zheng, R.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Trigonal pyramidal {AsO2(OH)} bridging tetranuclear rare-earth encapsulated polyoxotungstate aggregates. Inorg. Chem. 2016, 55, 3881–3893.
Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two Ce3+-substituted selenotungstates regulated by N,N-dimethylethanolamine and dimethylamine hydrochloride. Inorg. Chem. 2019, 58, 8442–8450.
Li, H. L.; Liu, Y. J.; Liu, J. L.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Structural transformation from dimerization to tetramerization of serine-decorated rare-earth-incorporated arsenotungstates induced by the usage of rare-earth salts. Chem.—Eur. J. 2017, 23, 2673–2689.
Li, Y. M.; Li, H. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Three types of distinguishing L-alanine-decorated and rare-earth-incorporated arsenotungstate hybrids prepared in a facile one-step assembly strategy. Inorg. Chem. 2019, 58, 3479–3491.
Shang, S. X.; Lin, Z. G.; Yin, A. X.; Yang, S.; Chi, Y. N.; Wang, Y.; Dong, J.; Liu, B.; Zhen, N.; Hill, C. L. et al. Self-assembly of Ln(III)-containing tungstotellurates(VI): Correlation of structure and photoluminescence. Inorg. Chem. 2018, 57, 8831–8840.
Wang, D.; Li, Y. M.; Zhang, Y.; Xu, X.; Liu, Y.; Chen, L. J.; Zhao, J. W. Construction of Ln3+-substituted arsenotungstates modified by 2,5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution. Inorg. Chem. 2020, 59, 6839–6848.
Wang, Y. J.; Wu, S. Y.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. Octahedron-shaped three-shell Ln14-substituted polyoxotungstogermanates encapsulating a W4O15 cluster: Luminescence and frequency dependent magnetic properties. Chem. Commun. (Camb.) 2019, 55, 2857–2860.
Zhang, Y.; Wang, D.; Zeng, B. X.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. An unprecedented polyhydroxycarboxylic acid ligand bridged multi-EuIII incorporated tellurotungstate and its luminescence propertie. Dalton Trans. 2020, 49, 8933–8948.
Du, M. H.; Zheng, X. Y.; Kong, X. J.; Long, L. S.; Zheng, L. S. Synthetic protocol for assembling giant heterometallic hydroxide clusters from building blocks: Rational design and efficient synthesis. Matter 2020, 3, 1334–1349.
Fang, X. K.; Kögerler, P. A polyoxometalate-based manganese carboxylate cluster. Chem. Commun. (Camb.) 2008, 3396–3398
Fang, X. K.; Kögerler, P. PO43−-mediated polyoxometalate supercluster assembly. Angew. Chem., Int. Ed. 2008, 47, 8123–8126.
Chen, W. L.; Li, Y. G.; Wang, Y. H.; Wang, E. B.; Zhang, Z. M. A new polyoxometalate-based 3d-4f heterometallic aggregate: A model for the design and synthesis of new heterometallic clusters. Dalton Trans. 2008, 865–867
Gu, Y. N.; Yu, H.; Lin, L. D.; Wu, Y. L.; Li, Z.; Pan, W. Y.; He, J.; Chen, L.; Li, Q.; Li, X. X. Two rare Cr-Ln (Ln = Dy, Tb) heterometallic cluster substituted polyoxometalates featuring hexameric aggregates: Hydrothermal syntheses, crystal structures and magnetic studies. New J. Chem. 2019, 43, 3011–3016.
Wang, J.; Zhao, J. W.; Zhao, H. Y.; Yang, B. F.; He, H.; Yang, G. Y. Syntheses, structures and properties of two multi-iron-samarium/multi-iron substituted germanotungstates. CrystEngComm 2014, 16, 252–259.
Zhang, Z. M.; Li, Y. G.; Yao, S.; Wang, E. B. Hexameric polyoxometalates decorated by six 3d-4f heterometallic clusters. Dalton Trans. 2011, 40, 6475–6479.
Ibrahim, M.; Krämer, S.; Schork, N.; Guthausen, G. Polyoxometalate-based high-spin cluster systems: A NMR relaxivity study up to 14 GHz/33 T. Dalton Trans. 2019, 48, 15597–15604.
Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Self-assembly of a giant tetrahedral 3d-4f single-molecule magnet within a polyoxometalate system. Angew. Chem., Int. Ed. 2015, 54, 15574–15578.
Ibrahim, M.; Peng, Y.; Moreno-Pineda, E.; Anson, C. E.; Schnack, J.; Powell, A. K. Gd3 triangles in a polyoxometalate matrix: Tuning molecular magnetocaloric effects in {Gd30M8} polyoxometalate/cluster hybrids through variation of M2+. Small Struct. 2021, 2, 2170029.
Reinoso, S.; Galán-Mascarós, J. R.; Lezama, L. New type of heterometallic 3d-4f rhomblike core in weakley-like polyoxometalates. Inorg. Chem. 2011, 50, 9587–9593.
Nohra, B.; Mialane, P.; Dolbecq, A.; Rivière, E.; Marrot, J.; Sécheresse, F. Heterometallic 3d-4f cubane clusters inserted in polyoxometalate matrices. Chem. Commun. (Camb.) 2009, 2703–2705
Wang, W. D.; Li, X. X.; Fang, W. H.; Yang, G. Y. Hydrothermal synthesis and structural characterization of a new keggin-type tungstogermanate containing heterometallic 3d-4f cubane clusters. J. Cluster Sci. 2011, 22, 87–95.
Wang, Y. F.; Qin, Z. J.; Tian, Z. F.; Bai, Y.; Li, Y. M.; Zhang, Y. W.; Dang, D. B. A series of germanotungstate-based 3d-4f heterometallic compounds with visible-light induced photocatalytic, electrochemical and magnetic properties. J. Alloys Compd. 2019, 784, 961–969.
Zhao, J. W.; Shi, D. Y.; Chen, L. J.; Li, Y. Z.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Novel polyoxometalate hybrids consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. Dalton Trans. 2012, 41, 10740–10751.
Cai, J.; Zheng, X. Y.; Xie, J.; Yan, Z. H.; Kong, X. J.; Ren, Y. P.; Long, L. S.; Zheng, L. S. Anion-dependent assembly of heterometallic 3d-4f clusters based on a lacunary polyoxometalate. Inorg. Chem. 2017, 56, 8439–8445.
Li, S. R.; Wang, H. Y.; Su, H. F.; Chen, H. J.; Du, M. H.; Long, L. S.; Kong, X. J.; Zheng, L. S. A giant 3d-4f polyoxometalate super-tetrahedron with high proton conductivity. Small Methods 2021, 5, 2000777.
Wu, S. Y.; Wang, Y. J.; Jing, J. X.; Li, X. X.; Sun, Y. Q.; Zheng, S. T. Two organic-inorganic hybrid polyoxotungstogermanates containing organic ligand chelated Fe-Dy heterometallic clusters and frequency dependent magnetic properties. Inorg. Chem. Front. 2020, 7, 498–504.
Chen, Y.; Guo, Z. W.; Li, X. X.; Zheng, S. T.; Yang, G. Y. Multicomponent cooperative assembly of nanoscale boron-rich polyoxotungstates with 22 and 30 boron atoms. CCS Chem. 2022, 4, 1305–1314.
Chen, C. H.; Chen, Y.; Yao, R. Q.; Li, Y. X.; Zhang, C. X. Artificial Mn4Ca clusters with exchangeable solvent molecules mimicking the oxygen-evolving center in photosynthesis. Angew. Chem., Int. Ed. 2019, 58, 3939–3942.
Chen, Y. Z.; Liu, Z. J.; Zhang, Z. M.; Zhou, H. Y.; Zheng, X. T.; Wang, E. B. Systematic assembly of {LnMnIII4} appended cubanes with inorganic polyoxometalate ligands and their electrocatalytic property. Inorg. Chem. Commun. 2014, 46, 155–158.
Yao, R. Q.; Li, Y. X.; Chen, Y.; Xu, B. R.; Chen, C. H.; Zhang, C. X. Rare-earth elements can structurally and energetically replace the calcium in a synthetic Mn4CaO4-cluster mimicking the oxygen-evolving center in photosynthesis. J. Am. Chem. Soc. 2021, 143, 17360–17365.
Chen, L. J.; Zhang, F.; Ma, X.; Luo, J.; Zhao, J. W. Two types of novel tetra-iron substituted sandwich-type arsenotungastates with supporting lanthanide pendants. Dalton Trans. 2015, 44, 12598–12612.
Das, V.; Khan, I.; Hussain, F.; Sadakane, M.; Tsunoji, N.; Ichihashi, K.; Kato, C.; Inoue, K.; Nishihara, S. Single-molecule magnetic, catalytic and photoluminescence properties of heterometallic 3d-4f [Ln{PZn2W10O38(H2O)2}2]11− tungstophosphate nanoclusters. Eur. J. Inorg. Chem. 2021, 2021, 3819–3831.
Jiang, J.; Chen, Y. H.; Liu, L. L.; Chen, L. J.; Zhao, J. W. 2-Picolinate-decorated iron-lanthanide heterometallic germanotungstates including an S-shaped [Ge2W20O72]16− segment. Inorg. Chem. 2019, 58, 15853–15863.
Li, S. R.; Weng, Z. Z.; Jiang, L. P.; Wei, R. J.; Su, H. F.; Long, L. S.; Zheng, L. S.; Kong, X. J. A series of heterometallic 3d-4f polyoxometalates as single-molecule magnets. Chin. Chem. Lett. 2023, 34, 107251–107254.
Minato, T.; Salley, D.; Mizuno, N.; Yamaguchi, K.; Cronin, L.; Suzuki, K. Robotic stepwise synthesis of hetero-multinuclear metal oxo clusters as single-molecule magnets. J. Am. Chem. Soc. 2021, 143, 12809–12816.
Sato, R.; Suzuki, K.; Minato, T.; Yamaguchi, K.; Mizuno, N. Sequential synthesis of 3d-3d′-4f heterometallic heptanuclear clusters in between lacunary polyoxometalates. Inorg. Chem. 2016, 55, 2023–2029.
Zhu, S. L.; Xu, X.; Ou, S.; Zhao, M.; He, W. L.; Wu, C. D. Assembly of a metalloporphyrin-polyoxometalate hybrid material for highly efficient activation of molecular oxygen. Inorg. Chem. 2016, 55, 7295–7300.
Zhao, J. W.; Cao, J.; Li, Y. Z.; Zhang, J.; Chen, L. J. First tungstoantimonate-based transition-metal-lanthanide heterometallic hybrids functionalized by amino acid ligands. Cryst. Growth Des. 2014, 14, 6217–6229.
Cai, J.; Ye, R.; Liu, X. H.; Guo, L. L.; Qiao, X. R. Ionic strength effect on regulating the synthetic assembly of polyoxometalate clusters with slow magnetic relaxation behavior. Dalton Trans. 2020, 49, 16954–16961.
Das, V.; Khan, I.; Hussain, F.; Sadakane, M.; Hageo, K.; Ichihashi, K.; Inoue, K.; Nishihara, S. A self-assembled heterometallic {Co7-Ho1} nanocluster: 3d-4f trimeric keggin-type silicotungstate [HoCo7Si3W29O108(OH)5(H2O)4]18− and its catalytic and magnetic applications. Eur. J. Inorg. Chem. 2019, 2019, 430–436.
Tanuhadi, E.; Al-Sayed, E.; Novitchi, G.; Roller, A.; Giester, G.; Rompel, A. Cation-directed synthetic strategy using 4f tungstoantimonates as nonlacunary precursors for the generation of 3d-4f clusters. Inorg. Chem. 2020, 59, 8461–8467.
Gu, Y. N.; Chen, Y.; Wu, Y. L.; Zheng, S. T.; Li, X. X. A series of banana-shaped 3d-4f heterometallic cluster substituted polyoxometalates: Syntheses, crystal structures, and magnetic properties. Inorg. Chem. 2018, 57, 2472–2479.
Han, Q.; Li, Z.; Liang, X. M.; Ding, Y.; Zheng, S. T. Synthesis of a 6-nm-long transition-metal-rare-earth-containing polyoxometalate. Inorg. Chem. 2019, 58, 12534–12537.
Yao, M. Y.; Liu, Y. F.; Li, X. X.; Yang, G. P.; Zheng, S. T. The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid-base catalytic activity. Chem. Commun. (Camb.) 2022, 58, 5737–5740.
Xiao, H. P.; Zhang, R. T.; Li, Z.; Xie, Y. F.; Wang, M.; Ye, Y. D.; Sun, C.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. Organoamine-directed assembly of 5p-4f heterometallic cluster substituted polyoxometalates: Luminescence and proton conduction properties. Inorg. Chem. 2021, 60, 13718–13726.
Xu, X.; Chen, Y. H.; Zhang, Y.; Liu, Y. F.; Chen, L. J.; Zhao, J. W. Rare-earth and antimony-oxo clusters simultaneously connecting antimonotungstates comprising divacant and tetravacant keggin fragments. Inorg. Chem. 2019, 58, 11636–11648.
Li, H. L.; Xu, X.; Tang, Z. G.; Zhao, J. W.; Chen, L. J.; Yang, G. Y. Three lanthanide-functionalized antimonotungstate clusters with a {Sb4O4Ln3(H2O)8} core: Syntheses, structures, and properties. Inorg. Chem. 2021, 60, 18065–18074.
Xiao, H. P.; Hao, Y. S.; Li, X. X.; Xu, P.; Huang, M. D.; Zheng, S. T. A water-soluble antimony-rich polyoxometalate with broad-spectrum antitumor activities. Angew. Chem., Int. Ed. 2022, 61, e202210019.
Xu, X. ; Liu, X. Y. ; Wang, D. ; Liu, X. J. ; Chen, L. J. ; Zhao, J. W. {HPO3} and {WO4} simultaneously induce the assembly of tri-Ln(III)-incorporated antimonotungstates and their photoluminescence behaviors. Inorg. Chem 2021, 60, 1037–1044.
Xu, X.; Meng, R. R.; Lu, C. T.; Mei, L.; Chen, L. J.; Zhao, J. W. Acetate-decorated tri-Ln(III)-containing antimonotungstates with a tetrahedral {WO4} group as a structure-directing template and their luminescence properties. Inorg. Chem. 2020, 59, 3954–3963.
Shao, D.; Wang, X. Y. Development of single-molecule magnets. Chin. J. Chem. 2020, 38, 1005–1018.
Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Camón, A.; Evangelisti, M.; Luis, F.; Martínez-Pérez, M. J.; Sesé, J. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: The series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J. Am. Chem. Soc. 2012, 134, 14982–14990.
Liu, J. L.; Chen, Y. C.; Tong, M. L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453.
AlDamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Martí-Gastaldo, C.; Gaita-Ariño, A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J. Am. Chem. Soc. 2008, 130, 8874–8875.
Osamu, N.; Teruo, K.; Isao, O.; Yoshizo, M. High-conductivity solid proton conductors: Dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem. Lett. 1979, 8, 17–18.
Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.