Journal Home > Volume 2 , Issue 1

Heterojunctions have received much attention because of their perfect charge-separation effectiveness in improving catalytic/photocatalytic activity, but reproducible formation and nonuniform particle size remain ongoing challenges. Numerous metal-oxide clusters with constructions similar to heterojunction nanoparticles, referred to in this study as intramolecular heterojunction compounds, have now been discovered in the literature and may be potential solutions to the aforementioned challenges. The first section of this critical review introduces the concept of intramolecular heterojunction and the constructions, synthetic methods, and tabulation of selected examples. Catalytic reactions using intramolecular heterojunction compounds are systemically surveyed in the second part, including activation of H2O2 and O2 for selective oxidations, electrocatalytic reductions, photocatalytic water splitting, and CO2 conversion. Finally, future research directions are discussed. In the future, more intramolecular heterojunction compounds may be designed and synthesized following this path, which would undoubtedly benefit research in molecular chemistry and photocatalysis.


menu
Abstract
Full text
Outline
About this article

Metal-oxide clusters with semiconductive heterojunction counterparts

Show Author's information Guanyun ZhangYifeng Wang ( )
Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Abstract

Heterojunctions have received much attention because of their perfect charge-separation effectiveness in improving catalytic/photocatalytic activity, but reproducible formation and nonuniform particle size remain ongoing challenges. Numerous metal-oxide clusters with constructions similar to heterojunction nanoparticles, referred to in this study as intramolecular heterojunction compounds, have now been discovered in the literature and may be potential solutions to the aforementioned challenges. The first section of this critical review introduces the concept of intramolecular heterojunction and the constructions, synthetic methods, and tabulation of selected examples. Catalytic reactions using intramolecular heterojunction compounds are systemically surveyed in the second part, including activation of H2O2 and O2 for selective oxidations, electrocatalytic reductions, photocatalytic water splitting, and CO2 conversion. Finally, future research directions are discussed. In the future, more intramolecular heterojunction compounds may be designed and synthesized following this path, which would undoubtedly benefit research in molecular chemistry and photocatalysis.

Keywords: catalysis, photocatalysis, heterojunction, metal-oxide cluster, sandwich complexes, S-scheme

References(109)

[1]

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

[2]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[3]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[4]

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

[5]

Li, N. Y.; Chen, X. J.; Wang, J.; Liang, X. M.; Ma, L. T.; Jing, X. L.; Chen, D. L.; Li, Z. Q. ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano 2022, 16, 3332–3340.

[6]

Low, J.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. In situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981.

[7]

Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[8]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[9]

Lian, Z. C.; Sakamoto, M.; Vequizo, J. J. M.; Ranasinghe, C. S. K.; Yamakata, A.; Nagai, T.; Kimoto, K.; Kobayashi, Y.; Tamai, N.; Teranishi, T. Plasmonic p-n junction for infrared light to chemical energy conversion. J. Am. Chem. Soc. 2019, 141, 2446–2450.

[10]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[11]

Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537.

[12]

Cao, X.; Chen, Z.; Lin, R.; Cheong, W.-C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

[13]

Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307.

[14]

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

[15]

Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A.; Mul, G. Toward a physically sound structure−activity relationship of TiO2-based photocatalysts. J. Phys. Chem. C 2010, 114, 327–332.

[16]

Liu, Y. N.; Chen, C. S.; Valdez, J.; Motta Meira, D.; He, W. T.; Wang, Y.; Harnagea, C.; Lu, Q. Q.; Guner, T.; Wang, H. et al. Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 2021, 12, 1231.

[17]

Wang, Q.; Warnan, J.; Rodríguez-Jiménez, S.; Leung, J. J.; Kalathil, S.; Andrei, V.; Domen, K.; Reisner, E. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 2020, 5, 703–710.

[18]

Wen, F. Y.; Li, C. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc. Chem. Res. 2013, 46, 2355–2364.

[19]

Xu, C. P.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902.

[20]

Wang, S.-S.; Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[21]

Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717.

[22]

Gumerova, N. I.; Rompel, A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.

[23]

Zheng, S.-T.; Yang, G.-Y. Recent advances in paramagnetic-TM-Substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[24]

Liu, J.-X.; Zhang, X.-B.; Li, Y.-L.; Huang, S.-L.; Yang, G.-Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[25]

Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.

[26]

Oms, O.; Dolbecq, A.; Mialane, P. Diversity in structures and properties of 3D-incorporating polyoxotungstates. Chem. Soc. Rev. 2012, 41, 7497–7536.

[27]

Zheng, S.-T.; Zhang, J.; Clemente-Juan, J. M.; Yuan, D.-Q.; Yang, G.-Y. Poly(polyoxotungstate)s with 20 nickel centers: From nanoclusters to one-dimensional chains. Angew. Chem., Int. Ed. 2009, 48, 7176–7179.

[28]

Huang, L.; Zhang, J.; Cheng, L.; Yang, G.-Y. Poly(polyoxometalate)s assembled by {Ni6PW9} units: From ring-shaped Ni24-tetramers to rod-shaped Ni40-octamers. Chem. Commun. 2012, 48, 9658–9660.

[29]

Lv, H. J.; Chi, Y. N.; van Leusen, J.; Kögerler, P.; Chen, Z. Y.; Bacsa, J.; Geletii, Y. V.; Guo, W. W.; Lian, T. Q.; Hill, C. L. [{Ni4[OH]3AsO4}4[B-α-PW9O34]4]28−: A new polyoxometalate structural family with catalytic hydrogen evolution activity. Chem.—Eur. J 2015, 21, 17363–17370.

[30]

Goberna-Ferrón, S.; Vigara, L.; Soriano-López, J.; Galán-Mascarós, J. R. Identification of a nonanuclear {CoII9} polyoxometalate cluster as a homogeneous catalyst for water oxidation. Inorg. Chem. 2012, 51, 11707–11715.

[31]

Han, X.-B.; Li, Y.-G.; Zhang, Z.-M.; Tan, H.-Q.; Lu, Y.; Wang, E.-B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493.

[32]

Han, X.-B.; Zhang, Z.-M.; Zhang, T.; Li, Y.-G.; Lin, W. B.; You, W. S.; Su, Z.-M.; Wang, E.-B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366.

[33]

Huang, L.; Wang, S.-S.; Zhao, J.-W.; Cheng, L.; Yang, G.-Y. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642.

[34]

Blasco-Ahicart, M.; Soriano-López, J.; Carbó, J. J.; Poblet, J. M.; Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 2018, 10, 24–30.

[35]

Fan, X.; Wang, J. H.; Wu, K. F.; Zhang, L.; Zhang, J. Isomerism in Titanium-Oxo clusters: Molecular anatase model with atomic structure and improved photocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 1320–1323.

[36]

Zhang, G. Y.; Liu, C. Y.; Long, D.-L.; Cronin, L.; Tung, C.-H.; Wang, Y. F. Water-soluble pentagonal-prismatic titanium-oxo clusters. J. Am. Chem. Soc. 2016, 138, 11097–11100.

[37]

Zhang, G. Y.; Baranov, M.; Wang, F.; Poblet, J. M.; Kozuch, S.; Leffler, N.; Shames, A. I.; Clemente-Juan, J. M.; Neyman, A.; Weinstock, I. A. Soluble complexes of cobalt oxide fragments bring the unique CO2 photoreduction activity of a bulk material into the flexible domain of molecular science. J. Am. Chem. Soc. 2021, 143, 20769–20778.

[38]

Hong, Z.-F.; Xu, S.-H.; Yan, Z.-H.; Lu, D.-F.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A large titanium oxo cluster featuring a well-defined structural unit of rutile. Cryst. Growth Des. 2018, 18, 4864–4868.

[39]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[40]

Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W. A brief review of the crucial progress on heterometallic polyoxotungstates in the past decade. CrystEngComm 2016, 18, 842–862.

[41]

Li, H.-L.; Lian, C.; Yin, D.-P.; Yang, G.-Y. Nonanuclear heterometal five-layer sandwich-type polyoxometalate. Inorg. Chem. 2020, 59, 6131–6136.

[42]

Benedict, J. B.; Coppens, P. The crystalline nanocluster phase as a medium for structural and spectroscopic studies of light absorption of photosensitizer dyes on semiconductor surfaces. J. Am. Chem. Soc. 2010, 132, 2938–2944.

[43]

Lv, Y. K.; Cheng, J.; Steiner, A.; Gan, L. H.; Wright, D. S. Dipole-induced band-gap reduction in an inorganic cage. Angew. Chem., Int. Ed. 2014, 53, 1934–1938.

[44]

Liu, Y.-J.; Fang, W.-H.; Zhang, L.; Zhang, J. Recent advances in heterometallic polyoxotitanium clusters. Coord. Chem. Rev. 2020, 404, 213099.

[45]

Liu, C. Y.; Niu, H. H.; Wang, D. X.; Gao, C.; Said, A.; Liu, Y. S.; Wang, G.; Tung, C.-H.; Wang, Y. F. S-scheme Bi-oxide/Ti-oxide molecular hybrid for photocatalytic cycloaddition of carbon dioxide to epoxides. ACS Catal. 2022, 12, 8202–8213.

[46]

Nyman, M. Polyoxoniobate chemistry in the 21st century. Dalton Trans. 2011, 40, 8049–8058.

[47]

Zhao, H.-Y.; Li, Y.-Z.; Zhao, J.-W.; Wang, L.; Yang, G.-Y. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord. Chem. Rev. 2021, 443, 213966.

[48]

Wu, H.-L.; Zhang, Z.-M.; Li, Y.-G.; Wang, X.-L.; Wang, E.-B. Recent progress in polyoxoniobates decorated and stabilized via transition metal cations or clusters. CrystEngComm 2015, 17, 6261–6268.

[49]

Lu, J. K.; He, P. P.; Niu, J. Y.; Wang, J. P. Polyoxometalate-supported metal carbonyl derivatives: From synthetic strategies to structural diversity and applications. Inorg. Chem. Front. 2019, 6, 3041–3056.

[50]

Abramov, P. A.; Sokolov, M. N. Coordination chemistry of polyniobates and tantalates. Russ. J. Coord. Chem. 2017, 43, 421–432.

[51]

Raula, M.; Gan Or, G.; Saganovich, M.; Zeiri, O.; Wang, Y. F.; Chierotti, M. R.; Gobetto, R.; Weinstock, I. A. Polyoxometalate complexes of anatase-titanium dioxide cores in water. Angew. Chem., Int. Ed. 2015, 54, 12416–12421.

[52]

Crano, N. J.; Chambers, R. C.; Lynch, V. M.; Fox, M. A. Preparation and photocatalytic studies on a novel Ti-substituted polyoxometalate. J. Mol. Catal. A: Chem. 1996, 114, 65–75.

[53]

Anderson, T. M. ; Hardcastle, K. I. ; Okun, N. ; Hill, C. L. Asymmetric sandwich-type polyoxoanions. synthesis, characterization, and X-ray crystal structures of diferric complexes [TMIIFeIII2(P2W15O56)(P2TMII2W13O52)]16−, TM = Cu or Co. Inorg. Chem. 2001, 40, 6418–6425.

[54]

Yamase, T.; Cao, X. O.; Yazaki, S. Structure of double Keggin-Ti/W-mixed polyanion [(A-β-GeTi3W9O37)2O3]14− and multielectron-transfer-based photocatalyic H2-generation. J. Mol. Catal. A: Chem. 2007, 262, 119–127.

[55]

Zhang, Z. M.; Qi, Y. F.; Qin, C.; Li, Y. G.; Wang, E. B.; Wang, X. L.; Su, Z. M.; Xu, L. Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary keggin polyoxoanion and the high-nuclear spin cluster. Inorg. Chem. 2007, 46, 8162–8169.

[56]

Mal, S. S.; Dickman, M. H.; Kortz, U.; Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Müller, A.; Nellutla, S.; Kaur, N. et al. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster. Chem.—Eur. J. 2008, 14, 1186–1195.

[57]

Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.

[58]

Chen, W.-C.; Qin, C.; Wang, X.-L.; Li, Y.-G.; Zang, H.-Y.; Jiao, Y.-Q.; Huang, P.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. Assembly of Fe-substituted Dawson-type nanoscale selenotungstate clusters with photocatalytic H2 evolution activity. Chem. Commun. 2014, 50, 13265–13267.

[59]

Niu, J. Y.; Li, F.; Zhao, J. W.; Ma, P. T.; Zhang, D. D.; Bassil, B.; Kortz, U.; Wang, J. P. Tetradecacobalt(II)-containing 36-niobate [Co14(OH)16(H2O)8Nb36O106]20− and its photocatalytic H2 evolution activity. Chem.—Eur. J. 2014, 20, 9852–9857.

[60]

Du, X. Q.; Ding, Y.; Song, F. Y.; Ma, B. C.; Zhao, J. W.; Song, J. Efficient photocatalytic water oxidation catalyzed by polyoxometalate [Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6]27− based on abundant metals. Chem. Commun. 2015, 51, 13925–13928.

[61]

Chen, W.-C.; Wu, S.-T.; Qin, C.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M.; Wang, E.-B. An unprecedented {CuII14TeIV10} core incorporated in a 36-tungsto-4-silicate polyoxometalate with visible light-driven catalytic hydrogen evolution activity. Dalton Trans. 2018, 47, 16403–16407.

[62]

Paille, G.; Boulmier, A.; Bensaid, A.; Ha-Thi, M.-H.; Tran, T.-T.; Pino, T.; Marrot, J.; Rivière, E.; Hendon, C. H.; Oms, O. et al. An unprecedented {Ni14SiW9} hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chem. Commun. 2019, 55, 4166–4169.

[63]

Zhen, N.; Dong, J.; Lin, Z. G.; Li, X. X.; Chi, Y. N.; Hu, C. W. Self-assembly of polyoxovanadate-capped polyoxoniobates and their catalytic decontamination of sulfur mustard simulants. Chem. Commun. 2020, 56, 13967–13970.

[64]

Wu, Y.-L.; Zhang, R.-T.; Sun, Y.-Q.; Li, X.-X.; Zheng, S.-T. A series of cube-shaped polyoxoniobates encapsulating octahedral Cu12XmOn clusters with hydrolytic decomposition for chemical warfare agents. Front. Chem. 2020, 8, 586009.

[65]

Cui, T. T.; Qin, L.; Fu, F. Y.; Xin, X.; Li, H. J.; Fang, X. K.; Lv, H. J. Pentadecanuclear Fe-containing polyoxometalate catalyst for visible-light-driven generation of hydrogen. Inorg. Chem. 2021, 60, 4124–4132.

[66]

Sun, J.-J.; Wang, W.-D.; Li, X.-Y.; Yang, B.-F.; Yang, G.-Y. {Cu8} cluster-sandwiched polyoxotungstates and their polymers: Syntheses, structures, and properties. Inorg. Chem. 2021, 60, 10459–10467.

[67]

Sato, K.; Yonesato, K.; Yatabe, T.; Yamaguchi, K.; Suzuki, K. Nanostructured manganese oxides within a ring-shaped polyoxometalate exhibiting unusual oxidation catalysis. Chem. —Eur. J. 2022, 28, e202104051.

[68]

Zhang, M.; Xin, X.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G.-Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B: Environ. 2022, 303, 120893.

[69]

Chen, Y.; Guo, Z.-W.; Chen, Y.-P.; Zhuang, Z.-Y.; Wang, G.-Q.; Li, X.-X.; Zheng, S.-T.; Yang, G.-Y. Two novel nickel cluster substituted polyoxometalates: Syntheses, structures and their photocatalytic activities, magnetic behaviors, and proton conduction properties. Inorg. Chem. Front. 2021, 8, 1303–1311.

[70]

Zhang, G. Y.; Wang, F.; Tubul, T.; Baranov, M.; Leffler, N.; Neyman, A.; Poblet, J. M.; Weinstock, I. A. Complexed semiconductor cores activate hexaniobate ligands as nucleophilic sites for solar-light reduction of CO2 by water. Angew. Chem., Int. Ed. 2022, 61, e202213162.

[71]

Hill, C. L.; Khenkin, A. M.; Weeks, M. S.; Hou, Y. Principles and new approaches in selective catalytic homogeneous oxidation. ACS Symp. Ser. 1993, 523, 67–80.

[72]

Weinstock, I. A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chem. Rev. 1998, 98, 113–170.

[73]

Singh, R.; Dutta, S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 2018, 220, 607–620.

[74]

Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 2018, 8, 1701620.

[75]

Willkomm, J.; Orchard, K. L.; Reynal, A.; Pastor, E.; Durrant, J. R.; Reisner, E. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem. Soc. Rev. 2016, 45, 9–23.

[76]

Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C:Photochem. Rev. 2011, 12, 237–268.

[77]

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

[78]

Niu, J. Y.; Ma, P. T.; Niu, H. Y.; Li, J.; Zhao, J. W.; Song, Y.; Wang, J. P. Giant polyniobate clusters based on [Nb7O22]9− units derived from a Nb6O19 precursor. Chem.—Eur. J. 2007, 13, 8739–8748.

[79]

Eisenberg, R.; Gray, H. B. Preface on making oxygen. Inorg. Chem. 2008, 47, 1697–1699.

[80]

Kanan, M. W. ; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

[81]

Stracke, J. J. ; Finke, R. G. Water oxidation catalysis beginning with 2.5 μM [Co4(H2O)2(PW9O34)2]10–: Investigation of the true electrochemically driven catalyst at ≥ 600 mV overpotential at a glassy carbon electrode. ACS Catal. 2013, 3, 1209–1219.

[82]

Li, R.; Zhang, W.; Zhou, K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, 1705512.

[83]

Shin, J. Y.; Yamada, S. A.; Fayer, M. D. Carbon dioxide in a supported ionic liquid membrane: Structural and rotational dynamics measured with 2D IR and pump-probe experiments. J. Am. Chem. Soc. 2017, 139, 11222–11232.

[84]

Yu, K. M. K.; Curcic, I.; Gabriel, J.; Tsang, S. C. E. Recent advances in CO2 capture and utilization. ChemSusChem 2008, 1, 893–899.

[85]

Martens, J. A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P. A.; Marin, G. B.; Rabaey, K.; Saeys, M.; Verhelst, S. The chemical route to a carbon dioxide neutral world. ChemSusChem 2017, 10, 1039–1055.

[86]

Shaikh, R. R.; Pornpraprom, S.; D'Elia, V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 2018, 8, 419–450.

[87]

Bakiro, M.; Ahmed, S. H.; Alzamly, A. Efficient visible-light photocatalytic cycloaddition of CO2 and propylene oxide using reduced graphene oxide supported BiNbO4. ACS Sustain. Chem. Eng. 2020, 8, 12072–12079.

[88]

Liu, F. S.; Gu, Y. Q.; Xin, H.; Zhao, P. H.; Gao, J.; Liu, M. S. Multifunctional phosphonium-based deep eutectic ionic liquids: Insights into simultaneous activation of CO2 and epoxide and their subsequent cycloaddition. ACS Sustain. Chem. Eng. 2019, 7, 16674–16681.

[89]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

[90]

Kim, C.; Cho, K. M.; Al-Saggaf, A.; Gereige, I.; Jung, H.-T. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light. ACS Catal. 2018, 8, 4170–4177.

[91]

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

[92]

Zhang, M.; Lu, M.; Lang, Z.-L.; Liu, J.; Liu, M.; Chang, J.-N.; Li, L.-Y.; Shang, L.-J.; Wang, M.; Li, S.-L. et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 6500–6506.

[93]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[94]

Bae, K.-L.; Kim, J.; Lim, C. K.; Nam, K. M.; Song, H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 2017, 8, 1156.

[95]

Low, J.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A Review of direct z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

[96]

Chen, C.; Hu, J. D.; Yang, X. G.; Yang, T. Y.; Qu, J. F.; Guo, C. X.; Li, C. M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173.

[97]

Zhang, Z. J.; Li, L.; Jiang, Y.; Xu, J. Y. Step-scheme photocatalyst of CsPbBr3 quantum Dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg. Chem. 2022, 61, 3351–3360.

[98]

Li, X.; Song, X. H.; Ma, C. C.; Cheng, Y. L.; Shen, D.; Zhang, S. M.; Liu, W. K.; Huo, P. W.; Wang, H. Q. Direct Z-scheme WO3/graphitic carbon nitride nanocomposites for the photoreduction of CO2. ACS Appl. Nano Mater. 2020, 3, 1298–1306.

[99]

Zhang, X. D.; Kim, D.; Yan, J.; Lee, L. Y. S. Photocatalytic CO2 reduction enabled by interfacial s-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4. ACS Appl. Mater. Interfaces 2021, 13, 9762–9770.

[100]

Wang, S.-S.; Liang, X.; Lv, Y.-K.; Li, Y.-Y.; Zhou, R.-H.; Yao, H.-C.; Li, Z.-J. Electric field coupling in the S-scheme CdS/BiOCl heterojunction for boosted charge transport toward photocatalytic CO2 reduction. ACS Appl. Energy Mater. 2022, 5, 1149–1158.

[101]

Yang, J.; Hao, J. Y.; Xu, S. Y.; Wang, Q.; Dai, J.; Zhang, A. C.; Pang, X. C. InVO4/β-AgVO3 nanocomposite as a direct Z-scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 32025–32037.

[102]

Lin, N. S.; Lin, Y.; Qian, X. J.; Wang, X. X.; Su, W. Y. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light. ACS Sustain. Chem. Eng. 2021, 9, 13686–13694.

[103]

Bhosale, R.; Jain, S.; Vinod, C. P.; Kumar, S.; Ogale, S. Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light. ACS Appl. Mater. Interfaces 2019, 11, 6174–6183.

[104]

Wang, J. C.; Wang, J.; Li, N. Y.; Du, X. Y.; Ma, J.; He, C. H.; Li, Z. Q. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum Dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485.

[105]

Ozer, R. R.; Ferry, J. L. Investigation of the photocatalytic activity of TiO2–polyoxometalate systems. Environ. Sci. Technol. 2001, 35, 3242–3246.

[106]

Chen, C. C.; Lei, P. X.; Ji, H. W.; Ma, W. H.; Zhao, J. C.; Hidaka, H.; Serpone, N. Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ. Sci. Technol. 2004, 38, 329–337.

[107]

Duan, Y.; Chakraborty, B.; Tiwari, C. K.; Baranov, M.; Tubul, T.; Leffler, N.; Neyman, A.; Weinstock, I. A. Solution-state catalysis of visible light-driven water oxidation by macroanion-like inorganic complexes of γ-FeOOH nanocrystals. ACS Catal. 2021, 11, 11385–11395.

[108]

Chakraborty, B.; Gan-Or, G.; Duan, Y.; Raula, M.; Weinstock, I. A. Visible-light-driven water oxidation with a polyoxometalate-complexed hematite core of 275 iron atoms. Angew. Chem., Int. Ed. 2019, 58, 6584–6589.

[109]

Chakraborty, B.; Gan-Or, G.; Raula, M.; Gadot, E.; Weinstock, I. A. Design of an inherently-stable water oxidation catalyst. Nat. Commun. 2018, 9, 4896.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 September 2022
Revised: 23 October 2022
Accepted: 01 December 2022
Published: 18 January 2023
Issue date: March 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgement

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21922605), the Natural Science Foundation of Shandong Province (Nos. GG201809200108 and ZR2019ZD45), the Taishan Scholar Project 454 Foundation of Shandong Province (No. ts20190908) and the Fundamental Research Funds Shandong University (No. 2020QNQT012) for the financial supports.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return