Journal Home > Volume 2 , Issue 1

Releasing cations from highly negatively charged polyoxometalates (POMs) is never an easy task. Herein, by using a zwitterion (1-sulfopropyl-3-methylimidazolium salt, MIMPS) to dissociate POMs, the proton conductivity of POM electrolytes was enhanced and the capacitive performance of solid-state supercapacitors (SCs) based on polyaniline was further improved. MIMPS can promote the dissolution and dissociation of POMs in polymer solutions, releasing more mobile protons, which is conducive to rapid proton transport. The MIMPS-modified SCs have higher capacitive performance, with an areal capacitance of 13 F·cm−2 at a current density of 0.5 mA·cm−2, compared to SCs without MIMPS (6.4 F·cm−2). In addition, the MIMPS-modified SCs have lower interfacial impedance, indicating that MIMPS can improve the proton conductivity and interfacial conduction. This work provides a new strategy for improving the overall performance of SCs by optimizing POM-based electrolytes with a zwitterion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Zwitterion-dissociated polyoxometalate electrolytes for solid-state supercapacitors

Show Author's information Dongming Cheng§Zhixin Gao§Wenwen WangSiqi LiBo LiHong-Ying Zang ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

Dongming Cheng and Zhixin Gao contributed equally to this work.

Abstract

Releasing cations from highly negatively charged polyoxometalates (POMs) is never an easy task. Herein, by using a zwitterion (1-sulfopropyl-3-methylimidazolium salt, MIMPS) to dissociate POMs, the proton conductivity of POM electrolytes was enhanced and the capacitive performance of solid-state supercapacitors (SCs) based on polyaniline was further improved. MIMPS can promote the dissolution and dissociation of POMs in polymer solutions, releasing more mobile protons, which is conducive to rapid proton transport. The MIMPS-modified SCs have higher capacitive performance, with an areal capacitance of 13 F·cm−2 at a current density of 0.5 mA·cm−2, compared to SCs without MIMPS (6.4 F·cm−2). In addition, the MIMPS-modified SCs have lower interfacial impedance, indicating that MIMPS can improve the proton conductivity and interfacial conduction. This work provides a new strategy for improving the overall performance of SCs by optimizing POM-based electrolytes with a zwitterion.

Keywords: supercapacitors, polyoxometalates, proton conductivity, zwitterion

References(41)

[1]

Das, S.; Santra, S.; Mondal, P.; Majee, A.; Hajra, A. Zwitterionic imidazolium salt: Recent advances in organocatalysis. Synthesis 2016, 48, 1269–1285.

[2]

Ichikawa, T. Zwitterions as building blocks for functional liquid crystals and block copolymers. Polym. J. 2017, 49, 413–421.

[3]

Zheng, L. C.; Sun, Z. J.; Li, C. C.; Wei, Z. Y.; Jain, P.; Wu, K. Progress in biodegradable zwitterionic materials. Polym. Degrad. Stabil. 2017, 139, 1–19.

[4]

Islam, A.; Li, J. G.; Pervaiz, M.; Lu, Z. H.; Sain, M.; Chen, L. H.; Ouyang, X. H. Zwitterions for organic/perovskite solar cells, light-emitting devices, and lithium ion batteries: Recent progress and perspectives. Adv. Energy Mater. 2019, 9, 1803354.

[5]

Sun, S. Z.; Han, L.; Hou, J. J.; Yang, Y. Q.; Yue, J. B.; Gu, G. X.; Chuah, C. Y.; Li, J. D.; Zhang, Z. S. Single-walled carbon nanotube gutter layer supported ultrathin zwitterionic microporous polymer membrane for high-performance lithium-sulfur battery. J. Colloid Interface Sci. 2022, 628, 1012–1022.

[6]

Mei, W. W.; Rothenberger, A. J.; Bostwick, J. E.; Rinehart, J. M.; Hickey, R. J.; Colby, R. H. Zwitterions raise the dielectric constant of soft materials. Phys. Rev. Lett. 2021, 127, 228001.

[7]

Woo, H. S.; Son, H.; Min, J. Y.; Rhee, J.; Lee, H. T.; Kim, D. W. Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries. Electrochim. Acta 2020, 345, 136248.

[8]

Li, G. J.; Guan, X. Z.; Wang, A. X.; Wang, C. Z.; Luo, J. Y. Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Storage Mater. 2020, 24, 574–578.

[9]

Taylor, M. E.; Panzer, M. J. Fully-zwitterionic polymer-supported ionogel electrolytes featuring a hydrophobic ionic liquid. J. Phys. Chem. B 2018, 122, 8469–8476.

[10]

Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J. Z.; Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 2004, 3, 29–32.

[11]

Yoshizawa, M.; Ohno, H. A new family of zwitterionic liquids arising from a phase transition of ammonium inner salts containing an ether bond. Chem. Lett. 2004, 33, 1594–1595.

[12]

Brown, M. U.; Triozzi, A.; Emrick, T. Polymer zwitterions with phosphonium cations. J. Am. Chem. Soc. 2021, 143, 6528–6532.

[13]

Makhlooghiazad, F.; O'Dell, L. A.; Porcarelli, L.; Forsyth, C.; Quazi, N.; Asadi, M.; Hutt, O.; Mecerreyes, D.; Forsyth, M.; Pringle, J. M. Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. Nat. Mater. 2022, 21, 228–236.

[14]

Xue, W. L.; Deng, W. H.; Chen, H.; Liu, R. H.; Taylor, J. M.; Li, Y. K.; Wang, L.; Deng, Y. H.; Li, W. H.; Wen, Y. Y. et al. MOF-directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem., Int. Ed. 2021, 60, 1290–1297.

[15]

Cheng, D. M.; Li, B.; Sun, S.; Zhu, L. J.; Li, Y.; Wu, X. L.; Zang, H. Y. Proton-conducting polyoxometalates as redox electrolytes synergistically boosting the performance of self-healing solid-state supercapacitors with polyaniline. CCS Chem. 2021, 3, 1649–1658.

[16]

Gao, H.; Lian, K. Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors. J. Mater. Chem. 2012, 22, 21272–21278.

[17]

Gao, H.; Virya, A.; Lian, K. Proton conducting H5BW12O40 electrolyte for solid supercapacitors. J. Mater. Chem. A 2015, 3, 21511–21517.

[18]

Lian, K.; Tian, Q. F. Solid asymmetric electrochemical capacitors using proton-conducting polymer electrolytes. Electrochem. Commun. 2010, 12, 517–519.

[19]

Yang, L.; Hao, Y. H.; Lin, J. D.; Li, K.; Luo, S. H.; Lei, J.; Han, Y. H.; Yuan, R. M.; Liu, G. K.; Ren, B. et al. POM anolyte for all-anion redox flow batteries with high capacity retention and coulombic efficiency at mild pH. Adv. Mater. 2022, 34, 2107425.

[20]

Li, S. J.; Zhao, Y.; Knoll, S.; Liu, R. J.; Li, G.; Peng, Q. P.; Qiu, P. T.; He, D. F.; Streb, C.; Chen, X. N. High proton-conductivity in covalently linked polyoxometalate-organoboronic acid-polymers. Angew. Chem., Int. Ed. 2021, 60, 16953–16957.

[21]

Zhu, M. H.; Iwano, T.; Tan, M. J.; Akutsu, D.; Uchida, S.; Chen, G. Y.; Fang, X. K. Macrocyclic polyoxometalates: Selective polyanion binding and ultrahigh proton conduction. Angew. Chem. , Int. Ed. 2022, 61, e202200666.

[22]

Xiao, H. P.; Zhang, R. T.; Li, Z.; Xie, Y. F.; Wang, M.; Ye, Y. D.; Sun, C.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. Organoamine-directed assembly of 5p-4f heterometallic cluster substituted polyoxometalates: Luminescence and proton conduction properties. Inorg. Chem. 2021, 60, 13718–13726.

[23]

Guo, H. K.; Li, L. B.; Xu, X. L.; Zeng, M. H.; Chai, S. C.; Wu, L. X.; Li, H. L. Semi-solid superprotonic supramolecular polymer electrolytes based on deep eutectic solvents and polyoxometalates. Angew. Chem., Int. Ed. 2022, 61, e202210695.

[24]

Yang, K.; Hu, Y. Y.; Zhang, T. S.; Wang, B. Y.; Qin, J. X.; Li, N, X.; Zhao, Z. W.; Zhao, J. W.; Chao, D. L. Triple-functional polyoxovanadate cluster in regulating cathode, anode, and electrolyte for tough aqueous zinc-ion battery. Adv. Energy Mater. 2022, 12, 202202671.

[25]

Guo, H. K.; Zeng, M. H.; Li, X.; He, H. B.; Wu, L. X.; Li, H. L. Multifunctional enhancement of proton-conductive, stretchable, and adhesive performance in hybrid polymer electrolytes by polyoxometalate nanoclusters. ACS Appl. Mater. Interfaces 2021, 13, 30039–30050.

[26]

Lin, J. M.; Li, N.; Yang, S. P.; Jia, M. J.; Liu, J.; Li, X. M.; An, L.; Tian, Q. W.; Dong, L. Z.; Lan, Y. Q. Self-assembly of giant Mo240 hollow opening dodecahedra. J. Am. Chem. Soc. 2020, 142, 13982–13988.

[27]

Liu, B. L.; Hu, B.; Du, J.; Cheng, D. M.; Zang, H. Y.; Ge, X.; Tan, H. Q.; Wang, Y. H.; Duan, X. Z.; Jin, Z. et al. Precise molecular-level modification of nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew. Chem., Int. Ed. 2021, 60, 6076–6085.

[28]

Zeng, M. H.; Liu, W. Q.; Guo, H. K.; Li, T. T.; Li, Q. J.; Zhao, C. J.; Li, X. J.; Li, H. L. Polyoxometalate-cross-linked proton exchange membranes with post-assembled nanostructures for high-temperature proton conduction. ACS Appl. Energy Mater. 2022, 5, 9058–9069.

[29]
Cheng, D. M. ; Li, K. ; Zang, H. Y. ; Chen, J. J. Recent advances on polyoxometalate-based ion-conducting electrolytes for energy-related devices. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12341.
DOI
[30]

Guo, S. S.; Huang, L. L.; Ye, Y. X.; Liu, L. Z.; Yao, Z. Z.; Xiang, S. C.; Zhang, J. D.; Zhang, Z. J. Carbazole Based Anionic MOF for Proton Conductivity. Chin. J. Struct. Chem. 2021, 40, 55–60.

[31]

Sun, S. H. ; Zhang, Q. C. ; Ye, X. L. ; Kashi, C. ; Li, W. H. ; Wang, G. E. ; Xu, G. High-humidity Sensor of a New Trinuclear Ti3-Oxo Cluster. Chin. J. Struct. Chem 2022, 41, 2203070–2203076.

[32]

Chai, S. C. ; Xu, F. R. ; Zhang, R. C. ; Wang, X. L. ; Zhai, L. ; Li, X. ; Qian, H. J. ; Wu, L. X. ; Li, H. L. Hybrid liquid-crystalline electrolytes with high-temperature-stable channels for anhydrous proton conduction. J. Am. Chem. Soc 2021, 143, 21433–21442.

[33]

MacFarlane, D. R.; Meakin, P.; Amini, N.; Forsyth, M. Structural studies of ambient temperature plastic crystal ion conductors. J. Phys.:Condens. Matter 2001, 13, 8257–8267.

[34]
Yan, S. S. ; Lu, Y. ; Liu, F. X. ; Xia, Y. C. ; Li, Q. ; Liu, K. Zwitterionic matrix with highly delocalized anionic structure as an efficient lithium ion conductor. CCS Chem., in press, DOI: 10.31635/ccschem.022.202202198.
DOI
[35]

Huang, T. P.; Xie, Z. R.; Wu, Q. Y.; Yan, W. F. Temperature-dependent gel-type ionic liquid compounds based on vanadium-substituted polyoxometalates with Keggin structure. Dalton Trans. 2016, 45, 3958–3963.

[36]

Barth, M.; Lapkowski, M.; Lefrant, S. Electrochemical behaviour of polyaniline films doped with heteropolyanions of Keggin structure. Electrochim. Acta 1999, 44, 2117–2123.

[37]

Wu, X. F.; Cai, H. X.; Wu, Q. Y.; Yan, W. F. Substitution effect in reversible gel-liquid phase transformation polyoxometalate ionic liquid compounds. Dalton Trans. 2016, 45, 11256–11260.

[38]

Xia, X. L.; Fan, D. W.; An, B. H.; Cai, Y. Y.; Wei, Q. Electrochemical behavior of Keggin-type heteropolyanion doped composite of polyaniline and multi-walled carbon nanotubes. J. Mol. Liq. 2015, 206, 335–337.

[39]

Wang, J.; Yang, B.; Peng, X. L.; Ding, Y. C.; Yu, S. S.; Zhang, F. Q.; Zhang, L. F.; Wu, H. D.; Guo, J. Design and preparation of polyoxometalate-based catalyst [MIMPs]3PMo6W6O40 and its application in deep oxidative desulfurization with excellent recycle performance and low molar O/S ratio. Chem. Eng. J. 2022, 429, 132446.

[40]

Li, X. S.; Liu, S. H.; Chen, Y.; Zhang, G. X. Brønsted acidic heteropolyanion-based ionic liquid: A highly efficient reaction-induced self-separation catalyst for baeyer-villiger reaction. Tetrahedron Lett. 2022, 105, 154042.

[41]

Jing, L.; Zhang, F. M.; Zhong, Y. J.; Zhu, W. D. Hydroxylation of benzene to phenol by H2O2 over an inorganic-organic dual modified heteropolyacid. Chin. J. Chem. Eng. 2014, 22, 1220–1225.

File
0019_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 September 2022
Revised: 19 November 2022
Accepted: 01 December 2022
Published: 02 February 2023
Issue date: March 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871042, 21471028, and 22073094), Natural Science Foundation of Jilin Province (No. 20200201083JC), Natural Science Foundation of Department of education of Jilin Province (No. JJKH20201169KJ), and the Fundamental Research Funds for the Central Universities (Nos. 2412015KJ012 and 2412017BJ004)

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return