Journal Home > Volume 2 , Issue 1

Researchers pursuing the development of third-generation solar cells, which typically include quantum dot-sensitized solar cells (QDSSCs), dye-sensitized solar cells (DSSCs), perovskite solar cells (PSCs), and organic solar cells (OSCs), continue to prioritize low cost, simple preparation, high efficiency, and stability. Polyoxometalates (POMs) are a class of inorganic anionic metallic oxygen cluster compounds with abundant charge, skeleton structure, and excellent physical and chemical properties, such as strong electron acceptability, adjustable energy band structure, and reversible multi-electron redox properties. They are also inexpensive and environmentally friendly. Owing to these exceptional characteristics, POMs are used as building blocks for synthesizing other nanomaterials. Notably, leveraging the extraordinary characteristics of POMs to reduce costs and improve the efficiency and stability of solar cells is an effective strategy for addressing the current energy crisis. In this review, we summarize the research progress of various POM molecules and their derived POM-based nanomaterials in enhancing the performance of third-generation solar cells. Promising development prospects of POMs in the field of photovoltaic devices are also highlighted.


menu
Abstract
Full text
Outline
About this article

Application of polyoxometalates in third-generation solar cells

Show Author's information Qiu ZhangFengyan Li ( )Lin Xu ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China

Abstract

Researchers pursuing the development of third-generation solar cells, which typically include quantum dot-sensitized solar cells (QDSSCs), dye-sensitized solar cells (DSSCs), perovskite solar cells (PSCs), and organic solar cells (OSCs), continue to prioritize low cost, simple preparation, high efficiency, and stability. Polyoxometalates (POMs) are a class of inorganic anionic metallic oxygen cluster compounds with abundant charge, skeleton structure, and excellent physical and chemical properties, such as strong electron acceptability, adjustable energy band structure, and reversible multi-electron redox properties. They are also inexpensive and environmentally friendly. Owing to these exceptional characteristics, POMs are used as building blocks for synthesizing other nanomaterials. Notably, leveraging the extraordinary characteristics of POMs to reduce costs and improve the efficiency and stability of solar cells is an effective strategy for addressing the current energy crisis. In this review, we summarize the research progress of various POM molecules and their derived POM-based nanomaterials in enhancing the performance of third-generation solar cells. Promising development prospects of POMs in the field of photovoltaic devices are also highlighted.

Keywords: solar cells, polyoxometalates, perovskite solar cells (PSCs), photovoltaic devices, quantumdot-sensitized solar cells (QDSSCs), dye-sensitized solarcells (DSSCs), organic solar cells (OSCs)

References(122)

[1]

Izarova, N. V.; Pope, M. T.; Kortz, U. Noble metals in polyoxometalates. Angew. Chem., Int. Ed. 2012, 51, 9492–9510.

[2]

Nyman, M.; Burns, P. C. A comprehensive comparison of transition-metal and actinyl polyoxometalates. Chem. Soc. Rev. 2012, 41, 7354–7367.

[3]

Choi, J. H.; Kang, T. H.; Song, J. H.; Bang, Y.; Song, I. K. Redox behavior and oxidation catalysis of HnXW12O40 (X = Co2+, B3+, Si4+, and P5+) Keggin heteropolyacid catalysts. Catal. Commun. 2014, 43, 155–158.

[4]

Ye, T. L.; Wang, J. H.; Dong, G. H.; Jiang, Y. X.; Feng, C.; Yang, Y. L. Recent progress in the application of polyoxometalates for dye-sensitized/organic solar cells. Chin. J. Chem. 2016, 34, 747–756.

[5]

Walsh, J. J.; Bond, A. M.; Forster, R. J.; Keyes, T. E. Hybrid polyoxometalate materials for photo(electro-) chemical applications. Coord. Chem. Rev. 2016, 306, 217–234.

[6]

Kasprzak, M. S.; Leroi, G. E.; Crouch, S. R. Raman spectroscopic investigation of isomeric and mixed-valence heteropolyanions. Appl. Spectrosc. 1982, 36, 285–289.

[7]

Keggin, J. F. The structure and formula of 12-phosphotungstic acid. Proc. Roy. Soc. A 1934, 144, 75–100.

[8]

Zhao, J. W.; Li, Y. Z.; Chen, L. J.; Yang, G. Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Commun. (Camb.) 2016, 52, 4418–4445.

[9]

Marcì, G.; García-López, E. I.; Palmisano, L. Heteropolyacid-based materials as heterogeneous photocatalysts. Eur. J. Inorg. Chem. 2014, 2014, 21–35.

[10]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[11]

Zhang, M.; Xin, X.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B-Environ. 2022, 303, 120893.

[12]

Liu, S. Q.; Volkmer, D.; Kurth, D. G. Functional polyoxometalate thin films via electrostatic layer-by-layer self-assembly. J. Clust. Sci. 2003, 14, 405–419.

[13]

Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.

[14]

Liu, J. C.; Luo, J.; Han, Q.; Cao, J.; Chen, L. J.; Song, Y.; Zhao, J. W. Coexistence of long-range ferromagnetic ordering and spin-glass behavior observed in the first inorganic-organic hybrid 1-D oxalate-bridging nona-MnII sandwiched tungstoantimonate chain. J. Mater. Chem. C 2017, 5, 2043–2055.

[15]

Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838.

[16]

Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.

[17]

Busche, C.; Vilà-Nadal, L.; Yan, J.; Miras, H. N.; Long, D. L.; Georgiev, V. P.; Asenov, A.; Pedersen, R. H.; Gadegaard, N.; Mirza, M. M. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 2014, 515, 545–549.

[18]

Qin, L.; Zhao, C. Y.; Yao, L. Y.; Dou, H. B.; Zhang, M.; Xie, J.; Weng, T. C.; Lv, H. J.; Yang, G. Y. Efficient photogeneration of hydrogen boosted by long-lived dye-modified Ir(III) photosensitizers and polyoxometalate catalyst. CCS Chem. 2022, 4, 259–271.

[19]

Qin, L.; Wang, R. J.; Xin, X.; Zhang, M.; Liu, T. F.; Lv, H. J.; Yang, G. Y. A dual-functional supramolecular assembly for enhanced photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2022, 312, 121386.

[20]

Zhang, Z. M.; Zhang, T.; Wang, C.; Lin, Z. K.; Long, L. S.; Lin, W. B. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate. J. Am. Chem. Soc. 2015, 137, 3197–3200.

[21]

Han, X. B.; Zhang, Z. M.; Zhang, T.; Li, Y. G.; Lin, W. B.; You, W. S.; Su, Z. M.; Wang, E. B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366.

[22]

Li, H. L.; Zhang, M.; Lian, C.; Lang, Z. L.; Lv, H. J.; Yang, G. Y. Ring-shaped polyoxometalate built by {Mn4PW9} and PO4 units for efficient visible-light-driven hydrogen evolution. CCS Chem. 2021, 3, 2095–2103.

[23]

López-Lapeña, O.; Pallas-Areny, R. Solar energy radiation measurement with a low-power solar energy harvester. Comput. Electron. Agric. 2018, 151, 150–155.

[24]

Sun, X. D.; Jiang, S. Y.; Huang, H. W.; Li, H.; Jia, B. H.; Ma, T. Y. Solar energy catalysis. Angew. Chem., Int. Ed. 2022, 61, e202204880.

[25]

Diau, E. W. G. Next-generation solar cells and conversion of solar energy. ACS Energy Lett. 2017, 2, 334–335.

[26]

Jiao, L.; Dong, Y. Y.; Xin, X.; Wang, R. J.; Lv, H. J. Three-in-one: Achieving a robust and effective hydrogen-evolving hybrid material by integrating polyoxometalate, a photo-responsive metal-organic framework, and in situ generated Pt nanoparticles. J. Mater. Chem. A 2021, 9, 19725–19733.

[27]

Jiao, L.; Dong, Y. Y.; Xin, X.; Qin, L.; Lv, H. J. Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Appl. Catal. B-Environ. 2021, 291, 120091.

[28]

Kabir, F.; Manir, S.; Bhuiyan, M. M. H.; Aftab, S.; Ghanbari, H.; Hasani, A.; Fawzy, M.; De Silva, G. L. T.; Mohammadzadeh, M. R.; Ahmadi, R. et al. Instability of dye-sensitized solar cells using natural dyes and approaches to improving stability—An overview. Sustainable Energy Technol. Assess. 2022, 52, 102196.

[29]

Anrango-Camacho, C.; Pavón-Ipiales, K.; Frontana-Uribe, B. A.; Palma-Cando, A. Recent advances in hole-transporting layers for organic solar cells. Nanomaterials 2022, 12, 443.

[30]

Rasal, A. S.; Yadav, S.; Kashale, A. A.; Altaee, A.; Chang, J. Y. Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy 2022, 94, 106854.

[31]

Meng, J. W.; Lei, M.; Lai, C. Z.; Wu, Q. P.; Liu, Y. Y.; Li, C. L. Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 23256–23266.

[32]

Priyadarshini, M.; Shanmugan, S.; Kirubakaran, K. P.; Thomas, A.; Prakash, M.; Vediappan, K. Sodium ion intercalation and multi redox behavior of a Keggin type polyoxometalate during [PMo10V2O40]5− to [PMo10V2O40]27− as a cathode material for Na-ion rechargeable batteries. RSC Adv. 2021, 11, 19378–19386.

[33]

Ni, L. B.; Yang, G.; Liu, Y.; Wu, Z.; Ma, Z. Y.; Shen, C.; Lv, Z. X.; Wang, Q.; Gong, X. X.; Xie, J. et al. Self-assembled polyoxometalate nanodots as bidirectional cluster catalysts for polysulfide/sulfide redox conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 12222–12236.

[34]

Cao, Y.; Chen, J. J. J.; Barteau, M. A. Systematic approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries. J. Energy Chem. 2020, 50, 115–124.

[35]

Chi, M. Z.; Li, H. J.; Xin, X.; Qin, L.; Lv, H. J.; Yang, G. Y. All-inorganic Bis-Sb3O3-functionalized A-type anderson-evans polyoxometalate for visible-light-driven hydrogen production. Inorg. Chem. 2022, 61, 8467–8476.

[36]

Wang, Z. M.; Xin, X.; Zhang, M.; Li, Z.; Lv, H. J.; Yang, G. Y. Recent advances of mixed-transition-metal-substituted polyoxometalates. Sci. China Chem. 2022, 65, 1515–1525.

[37]

Yang, P.; Liu, Q. C.; Yu, F.; Wu, J. N.; Liu, Z. Y.; Peng, B. H. Cobalt substituted polyoxophosphomolybdate modified TiO2 for boosted photoelectrocatalytic water oxidation. J. Alloys Compd. 2021, 854, 157232.

[38]

Kumamoto, K.; Tsuchibashi, K.; Pramata, A. D.; Yuasa, M.; Shimanoe, K.; Kida, T. Visible light-driven photoenergy storage and photocatalysis using polyoxometallates coupled with a Ru complex. J. Phys. Chem. C 2017, 121, 13515–13523.

[39]

Wang, H. N.; Zhang, M.; Zhang, A. M.; Shen, F. C.; Wang, X. K.; Sun, S. N.; Chen, Y. J.; Lan, Y. Q. Polyoxometalate-based metal-organic frameworks with conductive polypyrrole for supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 32265–32270.

[40]

Shehzad, F. K.; Qu, N. N.; Zhou, Y. S.; Zhang, L. J.; Ji, H. Y.; Shi, Z. H.; Li, J. Q.; Hassan, S. U. Fabrication and notable optical nonlinearities of ultrathin composite films derived from water-soluble Keggin-type polyoxometalates and water-insoluble phthalocyanine. Dalton Trans. 2016, 45, 17948–17955.

[41]

Park, H.; Choi, W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in uv-illuminated suspensions of TiO2 and Pt/TiO2. J. Phys. Chem. B 2003, 107, 3885–3890.

[42]

Sun, Z. X.; Xu, L.; Guo, W. H.; Xu, B. B.; Liu, S. P.; Li, F. Y. Enhanced photoelectrochemical performance of nanocomposite film fabricated by self-assembly of titanium dioxide and polyoxometalates. J. Phys. Chem. C 2010, 114, 5211–5216.

[43]

Wang, L. H.; Xu, L.; Mu, Z. C.; Wang, C. G.; Sun, Z. X. Synergistic enhancement of photovoltaic performance of TiO2 photoanodes by incorporation of Dawson-type polyoxometalate and gold nanoparticles. J. Mater. Chem. 2012, 22, 23627–23632.

[44]

Sun, Z. X.; Li, F. Y.; Zhao, M. L.; Xu, L.; Fang, S. N. A comparative study on photoelectrochemical performance of TiO2 photoanodes enhanced by different polyoxometalates. Electrochem. Commun. 2013, 30, 38–41.

[45]

Wang, T. Q.; Sun, Z. X.; Li, F. Y.; Xu, L. Nanostructured polyoxometalate-modified SnO2 photoanode with improved photoelectrochemical performance. Electrochem. Commun. 2014, 47, 45–48.

[46]

Li, N.; Fang, S. N.; Sun, Z. X.; Liu, R.; Xu, L. Investigation on the photoconductivity of polyoxometalates. RSC Adv. 2016, 6, 81466–81470.

[47]

Li, N.; Sun, Z. X.; Liu, R.; Xu, L.; Xu, K.; Song, X. M. Enhanced power conversion efficiency in phthalocyanine-sensitized solar cells by modifying TiO2 photoanode with polyoxometalate. Sol. Energy Mater. Sol. Cells 2016, 157, 853–860.

[48]

Liu, R.; Sun, Z. X.; Zhang, Y. Z.; Xu, L.; Li, N. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells. J. Phys. Chem. Solids 2017, 109, 64–69.

[49]

Song, X. X.; Liu, R.; Sun, Z. X.; Shi, H. Y.; Xu, L. Polyoxometalates as electron-transport materials in phthalocyanine-sensitized solar cells. Mater. Res. Bull. 2018, 97, 326–333.

[50]

Yu, X. L.; Liu, R. J.; Zhang, G. J. Polyoxometalate-CdS quantum dots co-sensitized TiO2 nanorods array: Enhanced charge separation and light to electricity conversion efficiency. RSC Adv. 2013, 3, 8351.

[51]

Li, J. S.; Sang, X. J.; Chen, W. L.; Zhang, L. C.; Zhu, Z. M.; Li, Y. G.; Su, Z. M.; Wang, E. B. A strategy for breaking the MOF template to obtain small-sized and highly dispersive polyoxometalate clusters loaded on solid films. J. Mater. Chem. A 2015, 3, 14573–14577.

[52]

Chen, L.; Chen, W. L.; Li, J. P.; Wang, J. B.; Wang, E. B. A strategy to enhance the efficiency of quantum dot-sensitized solar cells by decreasing electron recombination with polyoxometalate/TiO2 as the electronic interface layer. ChemSusChem 2017, 10, 2945–2954.

[53]

Wang, S. M.; Liu, L.; Chen, W. L.; Wang, E. B.; Su, Z. M. Polyoxometalate-anatase TiO2 composites are introduced into the photoanode of dye-sensitized solar cells to retard the recombination and increase the electron lifetime. Dalton Trans. 2013, 42, 2691–2695.

[54]

Li, J. S.; Sang, X. J.; Chen, W. L.; Qin, C.; Wang, S. M.; Su, Z. M.; Wang, E. B. The application of ZnO nanoparticles containing polyoxometalates in dye-sensitized solar cells. Eur. J. Inorg. Chem. 2013, 2013, 1951–1959.

[55]

He, L. F.; Chen, L.; Zhao, Y.; Chen, W. L.; Shan, C. H.; Su, Z. M.; Wang, E. B. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells. J. Power Sources 2016, 328, 1–7.

[56]

Wang, S. M.; Liu, L.; Chen, W. L.; Su, Z. M.; Wang, E. B.; Li, C. Polyoxometalate/TiO2 interfacial layer with the function of accelerating electron transfer and retarding recombination for dye-sensitized solar cells. Ind. Eng. Chem. Res. 2014, 53, 150–156.

[57]

Shan, C. H.; Sang, X. J.; Zhang, H.; Li, J. S.; Chen, W. L.; Su, Z. M.; Wang, E. B. Enhanced DSSC performance with tri-pyridine-ruthenium heteropolytungstate. Inorg. Chem. Commun. 2014, 50, 13–16.

[58]

Sang, X. J.; Li, J. S.; Zhang, L. C.; Wang, Z. J.; Chen, W. L.; Zhu, Z. M.; Su, Z. M.; Wang, E. B. A novel carboxyethyltin functionalized sandwich-type germanotungstate: Synthesis, crystal structure, photosensitivity, and application in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 7876–7884.

[59]

Li, J. S.; Sang, X. J.; Chen, W. L.; Zhang, L. C.; Zhu, Z. M.; Ma, T. Y.; Su, Z. M.; Wang, E. B. Enhanced visible photovoltaic response of TiO2 thin film with an all-inorganic donor-acceptor type polyoxometalate. ACS Appl. Mater. Interfaces 2015, 7, 13714–13721.

[60]

Shan, C. H.; Zhang, H.; Chen, W. L.; Su, Z. M.; Wang, E. B. Pure inorganic D-A type polyoxometalate/reduced graphene oxide nanocomposite for the photoanode of dye-sensitized solar cells. J. Mater. Chem. A 2016, 4, 3297–3303.

[61]

He, P.; Li, X. H.; Wang, T.; Chen, W. C.; Zhang, H.; Chen, W. L. Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices. Inorg. Chem. Front. 2020, 7, 2621–2628.

[62]

Wang, Y. J.; Chen, W. L.; Chen, L.; Zheng, X. T.; Xu, S. S.; Wang, E. B. Sandwich-type silicotungstate modified TiO2 microspheres for enhancing light harvesting and reducing electron recombination in dye-sensitized solar cells. Inorg. Chem. Front. 2017, 4, 559–565.

[63]

Zheng, X. T.; Chen, W. L.; Chen, L.; Wang, Y. J.; Guo, X. W.; Wang, J. B.; Wang, E. B. A strategy for breaking polyoxometalate-based MOFs to obtain high loading amounts of nanosized polyoxometalate clusters to improve the performance of dye-sensitized solar cells. Chem.—Eur. J. 2017, 23, 8871–8878.

[64]

Wang, X. M.; Chen, L.; Chen, W. L.; Li, Y. G.; Wang, E. B. A strategy for utilizing hollow polyoxometalate nanocrystals to improve the efficiency of photovoltaic cells. Inorg. Chem. Commun. 2018, 96, 73–80.

[65]

Wu, D.; Chen, W. L.; Wang, T.; Li, F. R.; Li, J. P.; Wang, E. B. Synthesis of copper(II)-imidazole complex modified sandwich-type polyoxometalates for enhancing the power conversion efficiency in dye-sensitized solar cells. Dyes Pigm. 2019, 168, 151–159.

[66]

Gu, Y. T.; Wang, T.; Dong, Y. N.; Zhang, H.; Wu, D.; Chen, W. L. Ferroelectric polyoxometalate-modified nano semiconductor TiO2 for increasing electron lifetime and inhibiting electron recombination in dye-sensitized solar cells. Inorg. Chem. Front. 2020, 7, 3072–3080.

[67]

Liu, C. G.; Guan, W.; Yan, L. K.; Su, Z. M.; Song, P.; Wang, E. B. Second-order nonlinear optical properties of transition-metal-trisubstituted polyoxometalate-diphosphate complexes: A donor-conjugated bridge-acceptor paradigm for totally inorganic nonlinear optical materials. J. Phys. Chem. C 2009, 113, 19672–19676.

[68]

Yang, Y. B.; Xu, L.; Li, F. Y.; Du, X. G.; Sun, Z. X. Enhanced photovoltaic response by incorporating polyoxometalate into a phthalocyanine-sensitized electrode. J. Mater. Chem. 2010, 20, 10835–10840.

[69]

Sun, Z. X.; Li, F. Y.; Xu, L.; Liu, S. P.; Zhao, M. L.; Xu, B. B. Effects of dawson-type tungstophosphate on photoelectrochemical responses of cadmium sulfide composite film. J. Phys. Chem. C 2012, 116, 6420–6426.

[70]

Sun, Z. X.; Fang, S. N.; Li, F. Y.; Xu, L.; Hu, Y. M.; Ren, J. Y. Enhanced photovoltaic performance of copper phthalocyanine by incorporation of polyoxometalate. J. Photochem. Photobiol. A Chem. 2013, 252, 25–30.

[71]

Luo, X. Z.; Li, F. Y.; Xu, B. B.; Sun, Z. X.; Xu, L. Enhanced photovoltaic response of the first polyoxometalate-modified zinc oxide photoanode for solar cell application. J. Mater. Chem. 2012, 22, 15050–15055.

[72]

Li, J. S.; Sang, X. J.; Chen, W. L.; Zhang, L. C.; Su, Z. M.; Qin, C.; Wang, E. B. The research of a new polyoxometalates based photosensitizer on dye sensitized solar cell. Inorg. Chem. Commun. 2013, 38, 78–82.

[73]

Xu, D.; Chen, W. L.; Li, J. S.; Sang, X. J.; Lu, Y.; Su, Z. M.; Wang, E. B. The assembly of vanadium(IV)-substituted Keggin-type polyoxometalate/graphene nanocomposite and its application in photovoltaic system. J. Mater. Chem. A 2015, 3, 10174–10178.

[74]

Karimian, D.; Yadollahi, B.; Zendehdel, M.; Mirkhani, V. Efficient dye-sensitized solar cell with a pure thin film of a hybrid polyoxometalate covalently attached organic dye as a working electrode in a cobalt redox mediator system. RSC Adv. 2015, 5, 76875–76882.

[75]

Chen, L.; Chen, W. L.; Tan, H. Q.; Li, J. S.; Sang, X. J.; Wang, E. B. The improved efficiency of quantum-dot-sensitized solar cells with a wide spectrum and pure inorganic donor-acceptor type polyoxometalate as a collaborative cosensitizer. J. Mater. Chem. A 2016, 4, 4125–4133.

[76]

Guo, X. W.; Li, J. S.; Sang, X. J.; Chen, W. L.; Su, Z. M.; Wang, E. B. Three Keggin-type transition metal-substituted polyoxometalates as pure inorganic photosensitizers for p-type dye-sensitized solar cells. Chem.—Eur. J. 2016, 22, 3234–3238.

[77]

Zhang, W. Q.; Li, W. X.; He, X.; Zhao, L.; Chen, H.; Zhang, L.; Tian, P.; Xin, Z. P.; Fang, W.; Zhang, F. Q. Dendritic Fe-based polyoxometalates @ metal-organic framework (MOFs) combined with ZnO as a novel photoanode in solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 1623–1629.

[78]

Cruz, H.; Pinto, A. L.; Lima, J. C.; Branco, L. C.; Gago, S. Application of polyoxometalate-ionic liquids (POM-ILs) in dye-sensitized solar cells (DSSCs). Mater. Lett. X 2020, 6, 100033.

[79]

Yuan, C. C.; Wang, S. M.; Chen, W. L.; Liu, L.; Qin, C.; Su, Z. M.; Wang, E. B. Polyoxometalate supported complexes as effective electron-transfer mediators in dye-sensitized solar cells. Dalton Trans. 2014, 43, 1493–1497.

[80]

Yuan, C. C.; Wang, S. M.; Chen, W. L.; Liu, L.; Zhang, Z. M.; Lu, Y.; Su, Z. M.; Zhang, S. W.; Wang, E. B. The research of employing polyoxometalates as pure-inorganic electron-transfer mediators on dye-sensitized solar cells. Inorg. Chem. Commun. 2014, 46, 89–93.

[81]

Moll, H. E.; Black, F. A.; Wood, C. J.; Al-Yasari, A.; Marri, A. R.; Sazanovich, I. V.; Gibson, E. A.; Fielden, J. Increasing p-type dye sensitised solar cell photovoltages using polyoxometalates. Phys. Chem. Chem. Phys. 2017, 19, 18831–18835.

[82]

Bakker, T. M. A.; Mathew, S.; Reek, J. N. H. Lindqvist polyoxometalates as electrolytes in p-type dye sensitized solar cells. Sustainable Energy Fuels 2019, 3, 96–100.

[83]

Li, L. X.; Jin, Z. B.; Tao, R.; Li, F. Y.; Wang, Y. M.; Yang, X.; Xu, L. Efficient and low-cost Cu2S-H4SiW12O40/MoS2 counter electrodes in CdS quantum-dot sensitized solar cells with high short-circuit current density. J. Photochem. Photobiol. A Chem. 2019, 377, 101–108.

[84]

Yang, Y.; Zhang, Q.; Li, F. Y.; Xia, Z. N.; Xu, L. H3PW12O40/Co3O4-Cu2S as a low-cost counter electrode catalyst for quantum dot-sensitized solar cells. New J. Chem. 2020, 44, 11042–11048.

[85]

Yuan, B. L.; Gao, Q. Q.; Zhang, X. Y.; Duan, L. F.; Chen, L.; Mao, Z.; Li, X. S.; Lü, W. Reduced graphene oxide (RGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells. Electrochim. Acta 2018, 277, 50–58.

[86]

Wu, E. L.; Jin, J. S.; Liu, S. W.; Li, D.; Gao, S. F.; Deng, F.; Yan, X. M.; Xiong, Y.; Tang, H. L. A novel preparation of nano-copper chalcogenide (Cu2S)-based flexible counter electrode. Sci. Rep. 2019, 9, 12337.

[87]

Zhang, Q. ; Jin, L. ; Zhang, Y. K. ; Zhang, T. T. ; Li, F. Y. ; Xu, L. In situ sulfidation of porous sponge-like CuO/SiW11Co into Cu2S/SiW11Co as stabilized and efficient counter electrode for quantum dot-sensitized solar cells. Dalton Trans 2021, 50, 4519–4526.

[88]

Zhang, T. T.; Zhang, Q.; Wang, Y. M.; Li, F. Y.; Xu, L. Constructing high-performance H3PW12O40/CoS2 counter electrodes for quantum dot sensitized solar cells by reducing the surface work function of CoS2. Dalton Trans. 2021, 50, 12879–12887.

[89]

Almeida, L. C. P.; Gonçalves, A. D.; Benedetti, J. E.; Miranda, P. C. M. L.; Passoni, L. C.; Nogueira, A. F. Preparation of conducting polyanilines doped with Keggin-type polyoxometalates and their application as counter electrode in dye-sensitized solar cells. J. Mater. Sci. 2010, 45, 5054–5060.

[90]

Jiang, Y. X.; Yang, Y. L.; Zhu, J. J.; Qiang, L. S.; Ye, T. L.; Li, L.; Su, T.; Fan, R. Q. Nickel silicotungstate-decorated Pt photocathode as an efficient catalyst for triiodide reduction in dye-sensitized solar cells. Dalton Trans. 2016, 45, 16859–16868.

[91]

Wu, J. H.; Wu, S. Y.; Sun, W. H. Electropolymerization and application of polyoxometalate-doped polypyrrole film electrodes in dye-sensitized solar cells. Electrochem. Commun. 2021, 122, 106879.

[92]

Guo, S. S.; Qin, C.; Li, Y. G.; Lu, Y.; Su, Z. M.; Chen, W. L.; Wang, E. B. A long-term stable Pt counter electrode modified by POM-based multilayer film for high conversion efficiency dye-sensitized solar cells. Dalton Trans. 2012, 41, 2227–2230.

[93]

Sang, X. J.; Li, J. S.; Zhang, L. C.; Zhu, Z. M.; Chen, W. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Two carboxyethyltin functionalized polyoxometalates for assembly on carbon nanotubes as efficient counter electrode materials in dye-sensitized solar cells. Chem. Commun. (Camb.) 2014, 50, 14678–14681.

[94]

Li, J. P.; Li, X. H.; Wang, T.; He, P.; Li, F. R.; Chen, W. L.; Wang, E. B. Hierarchical structure superlattice P2Mo18/MoS2@C nanocomposites: A kind of efficient counter electrode materials for dye-sensitized solar cells. ACS Appl. Energy Mater. 2019, 2, 5824–5834.

[95]

Wang, T.; Xu, M.; Chen, W. L.; Li, X. H.; Li, F. R.; Wang, X. L.; Li, Y. W.; Liu, D.; Wang, E. B. Polyoxometalate-derived multi-component X/W2C@X,N-C (X = Co, Si, Ge, B, and P) nanoelectrocatalysts for efficient triiodide reduction in dye-sensitized solar cells. Chem.—Eur. J. 2020, 26, 4104–4111.

[96]

Wang, T.; Xu, M.; Li, X. H.; Wang, C. L.; Chen, W. L. Highly dispersed redox-active polyoxometalates’ periodic deposition on multi-walled carbon nanotubes for boosting electrocatalytic triiodide reduction in dye-sensitized solar cells. Inorg. Chem. Front. 2020, 7, 1676–1684.

[97]

Zhang, L.; Chen, W. C.; Wang, T.; Li, Y. J.; Ma, C. H.; Zheng, Y. X.; Gong, J. Polyoxometalate modified transparent metal selenide counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Inorg. Chem. Front. 2021, 8, 3230–3237.

[98]

Li, Y. J.; Xu, X. Y.; Wang, T.; Ji, T.; Li, F. R.; Chen, W. L.; Liu, D. Defected mos2 modified by vanadium-substituted Keggin-type polyoxometalates as electrocatalysts for triiodide reduction in dye-sensitized solar cells. Inorg. Chem. 2022, 61, 422–430.

[99]

Zhang, Y. Z.; Tao, R.; Zhao, X. M.; Sun, Z. X.; Wang, Y. J.; Xu, L. A highly photoconductive composite prepared by incorporating polyoxometalate into perovskite for photodetection application. Chem. Commun. (Camb.) 2016, 52, 3304–3307.

[100]

Zhang, Y. Z.; Wang, Y. J.; Sun, Z. X.; Li, F. Y.; Tao, R.; Jin, Z. B.; Xu, L. Large grain growth for hole-conductor-free fully printable perovskite solar cells via polyoxometalate molecular doping. Chem. Commun. (Camb.) 2017, 53, 2290–2293.

[101]

Tao, R.; Fang, W. C.; Li, F. Y.; Sun, Z. X.; Xu, L. Lanthanide-containing polyoxometalate as luminescent down-conversion material for improved printable perovskite solar cells. J. Alloys Compd. 2020, 823, 153738.

[102]

Xu, X. Y. ; Xie, M. Y. ; Xu, K. C. ; Zhao, Y. g-C3N4@PMo12 composite material double adjustment improves the performance of perovskite-based photovoltaic devices. Solar Energy 2020, 209, 363–370.

[103]

Wang, W.; Zhang, J.; Lin, K. F.; Dong, Y. Y.; Wang, J. Q.; Hu, B. Y.; Li, J.; Shi, Z.; Hu, Y. J.; Cao, W. et al. Construction of polyoxometalate-based material for eliminating multiple Pb-based defects and enhancing thermal stability of perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2105884.

[104]

Tao, R.; Zhang, Y. Z.; Jin, Z. B.; Sun, Z. X.; Xu, L. Polyoxometalate doped tin oxide as electron transport layer for low cost, hole-transport-material-free perovskite solar cells. Electrochim. Acta 2018, 284, 10–17.

[105]

Dong, G. H.; Ye, T. L.; Yang, Y. L.; Sheng, L.; Xia, D. B.; Wang, J. H.; Fan, X.; Fan, R. Q. SiW12-TiO2 mesoporous layer for enhanced electron-extraction efficiency and conductivity in perovskite solar cells. ChemSusChem 2017, 10, 2218–2225.

[106]

Sardashti, M. K.; Zendehdel, M.; Nia, N. Y.; Karimian, D.; Sheikhi, M. High efficiency MAPbI3 perovskite solar cell using a pure thin film of polyoxometalate as scaffold layer. ChemSusChem 2017, 10, 3773–3779.

[107]

Choi, Y. H.; Kim, H. B.; Yang, I. S.; Sung, S. D.; Choi, Y. S.; Kim, J.; Lee, W. I. Silicotungstate, a potential electron transporting layer for low-temperature perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 25257–25264.

[108]

Dong, G. H.; Xia, D. B.; Yang, Y. L.; Shenga, L.; Ye, T. L.; Fan, R. Q. Keggin-type PMo11V as a P-type dopant for enhancing the efficiency and reproducibility of perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 2378–2386.

[109]

Dong, Y. Y.; Yang, Y. L.; Qiu, L.; Dong, G. H.; Xia, D. B.; Liu, X. D.; Li, M. R.; Fan, R. Q. Polyoxometalate-based inorganic-organic hybrid [Cu(phen)2]2[(α-Mo8O26)]: A new additive to spiro-OMeTAD for efficient and stable perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 4224–4233.

[110]

Dong, Y. Y.; Zhang, J.; Yang, Y. L.; Qiu, L. L.; Xia, D. B.; Lin, K. F.; Wang, J. Q.; Fan, X.; Fan, R. Q. Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells. Angew. Chem., Int. Ed. 2019, 58, 17610–17615.

[111]

Fan, X.; Zhang, J.; Yang, Y. L.; Xia, D. B.; Dong, Y. Y.; Qiu, L. L.; Wang, J. Q.; Cao, W.; Hu, B. Y.; Wang, W. et al. Chemical doping engineering by utilizing trilacunary Keggin polyoxometalates as a dopant for high performance perovskite solar cells. Dalton Trans. 2021, 50, 279–286.

[112]

Fan, X.; Zhang, J.; Yang, Y. L.; Xia, D. B.; Dong, Y. Y.; Qiu, L. L.; Wang, J. Q.; Cao, W.; Wang, W.; Hu, B. Y. et al. New insight into the grafted transition metal ions in trilacunary Keggin polyoxometalates dopants for efficient and stable perovskite solar cells. J. Power Sources 2021, 504, 230073.

[113]

Saianand, G.; Gopalan, A. I.; Roy, V. A. L.; Wilson, G. J.; Jakmunee, J.; Sonar, P.; Lin, L. Y.; Kim, S. W.; Kang, S. W. Interface modification using a post-treatment-free heteropolyacid for effective charge selective bilayer formation in perovskite solar cells. Mater. Lett. 2020, 277, 128393.

[114]

Knipp, D.; Jovanov, V.; Tamang, A.; Wagner, V.; Salleo, A. Towards 3D organic solar cells. Nano Energy 2017, 31, 582–589.

[115]

Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765.

[116]

Agrawal, N.; Zubair Ansari, M.; Majumdar, A.; Gahlot, R.; Khare, N. Efficient up-scaling of organic solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 960–965.

[117]

Fang, Y.; Zhang, Q.; Li, F. Y.; Xu, L. Exploring inorganic hole collection materials from mixed-metal dawson-type polyoxometalates for efficient organic photovoltaic devices. Sol. RRL 2021, 6, 2100827.

[118]

Hu, L.; You, W.; Sun, L. L.; Yu, S.; Yang, M. Y.; Wang, H.; Li, Z. F.; Zhou, Y. H. Surface doping of non-fullerene photoactive layer by soluble polyoxometalate for printable organic solar cells. Chem. Commun. (Camb. ) 2021, 57, 2689–2692.

[119]

Kang, Q. ; Zheng, Z. ; Zu, Y. F. ; Liao, Q. ; Bi, P. Q. ; Zhang, S. Q. ; Yang, Y. ; Xu, B. W. ; Hou, J. H. n-doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells. Joule 2021, 5, 646–658.

[120]

Kang, Q.; Liao, Q.; Yang, C. Y.; Yang, Y.; Xu, B. W.; Hou, J. H. A new PEDOT derivative for efficient organic solar cell with a fill factor of 0.80. Adv. Energy Mater. 2022, 12, 2103892.

[121]

Wang, J.; Cong, S.; Wen, S. Z.; Yan, L. K.; Su, Z. M. A rational design for dye sensitizer: Density functional theory study on the electronic absorption spectra of organoimido-substituted hexamolybdates. J. Phys. Chem. C 2013, 117, 2245–2251.

[122]

Wang, J.; Li, H.; Ma, N. N.; Yan, L. K.; Su, Z. M. Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC). Dyes Pigm. 2013, 99, 440–446.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 August 2022
Revised: 23 October 2022
Accepted: 08 November 2022
Published: 18 January 2023
Issue date: March 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgement

This project was financially supported by the National Natural Science Foundation of China (No. 22071018) and the Natural Science Foundation of Jilin Province (No. 20220101069JC).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return