Journal Home > Volume 2 , Issue 1

Polyoxometalate-based metal–organic frameworks (PMOFs) as extended solids assembled from metal-oxide cluster units and metal–organic groups have drawn wide research attention in recent years due to the unique advantages of containing both polyoxometalate (POM) and metal–organic framework (MOF) units, which allow their multifunctional applications in catalysis, sensing, and energy storage. In this review, the recent progress on the syntheses, structural diversity, and potential applications of PMOFs are summarized. In terms of structure, two categories of PMOFs, POM@MOFs and POM–MOFs, are discussed. POM@MOFs are PMOFs in which the POM units are not coordinated to the MOF, whereas POM–MOFs are PMOFs in which the POM units are coordinated to the MOF. In terms of properties, some selected investigations on the application of PMOFs in catalysis, dye adsorption and degradation, chemical sensing and energy storage are covered. To conclude, a personal outlook and viewpoints on this field are presented. It is expected that this review will inspire researchers and provide helpful tips for the future rational design of function-oriented PMOFs.


menu
Abstract
Full text
Outline
About this article

State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal–organic frameworks

Show Author's information Yan Zhang1,2Yifan Liu1Dan Wang1Jiancai Liu1( )Junwei Zhao1 ( )Lijuan Chen1 ( )
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

Abstract

Polyoxometalate-based metal–organic frameworks (PMOFs) as extended solids assembled from metal-oxide cluster units and metal–organic groups have drawn wide research attention in recent years due to the unique advantages of containing both polyoxometalate (POM) and metal–organic framework (MOF) units, which allow their multifunctional applications in catalysis, sensing, and energy storage. In this review, the recent progress on the syntheses, structural diversity, and potential applications of PMOFs are summarized. In terms of structure, two categories of PMOFs, POM@MOFs and POM–MOFs, are discussed. POM@MOFs are PMOFs in which the POM units are not coordinated to the MOF, whereas POM–MOFs are PMOFs in which the POM units are coordinated to the MOF. In terms of properties, some selected investigations on the application of PMOFs in catalysis, dye adsorption and degradation, chemical sensing and energy storage are covered. To conclude, a personal outlook and viewpoints on this field are presented. It is expected that this review will inspire researchers and provide helpful tips for the future rational design of function-oriented PMOFs.

Keywords: metal–organic framework, polyoxometalate, multifunctional application

References(190)

[1]

Li, C. F.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Self-assembly of anionic polyoxometalate-organic architectures based on lacunary phosphomolybdates and pyridyl ligands. J. Am. Chem. Soc. 2019, 141, 7687–7692.

[2]

Xuan, W. M.; Pow, R.; Watfa, N.; Zheng, Q.; Surman, A. J.; Long, D. L.; Cronin, L. Stereoselective assembly of gigantic chiral molybdenum blue wheels using lanthanide ions and amino acids. J. Am. Chem. Soc. 2019, 141, 1242–1250.

[3]

Yin, P. C.; Wu, B.; Mamontov, E.; Daemen, L. L.; Cheng, Y. Q.; Li, T.; Seifert, S.; Hong, K. L.; Bonnesen, P. V.; Keum, J. K. et al. J. X-ray and neutron scattering study of the formation of core-shell-type polyoxometalates. J. Am. Chem. Soc. 2016, 138, 2638–2643.

[4]

Gao, J.; Yan, J.; Beeg, S.; Long, D. L.; Cronin L. One-pot versus sequential reactions in the self-assembly of gigantic nanoscale polyoxotungstates. J. Am. Chem. Soc. 2013, 135, 1796–1805.

[5]

Miras, H. N.; Richmond, C. J.; Long, D. L.; Cronin, L. Solution-phase monitoring of the structural evolution of a molybdenum blue nanoring. J. Am. Chem. Soc. 2012, 134, 3816–3824.

[6]

Stuckart, M.; Monakhov, K. Y. Polyoxometalates as components of supramolecular assemblies. Chem. Sci. 2019, 10, 4364–4376.

[7]

Vilà-Nadal, L.; Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat. Rev. Mater. 2017, 2, 17054.

[8]

Chen, W. C.; Li, H. L.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Assembly of cerium(III)-stabilized polyoxotungstate nanoclusters with SeO32−/TeO32− templates: From single polyoxoanions to inorganic hollow spheres in dilute solution. Chem.—Eur. J. 2013, 19, 11007–11015.

[9]

Yin, J.; Qi, L.; Wang, H. Y. Polyoxometalate-assisted synthesis of TiO2 nanoparticles and their applications in aqueous hybrid electrochemical capacitors. ACS Appl. Mater. Interfaces 2011, 3, 4315–4322.

[10]

Li, Y. M.; Li, H. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Three types of distinguishing L-alanine-decorated and rare-earth-incorporated arsenotungstate hybrids prepared in a facile one-step assembly strategy. Inorg. Chem. 2019, 58, 3479–3491.

[11]

Sun, H.; Yin, H. Q.; Shi, W. X.; Yang, L. L.; Guo, X. W.; Lin, H.; Zhang, J. W.; Lu, T. B.; Zhang, Z. M. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res. 2022, 15, 3026–3033.

[12]

Bassil, B. S.; Mal, S. S.; Dickman, M. H.; Kortz, U.; Oelrich, H.; Walder, L. 6-Peroxo-6-zirconium crown and its hafnium analogue embedded in a triangular polyanion:[M6(O2)6(OH)6(γ-SiW10O36)3]18- (M = Zr, Hf). J. J. Am. Chem. Soc. 2008, 130, 6696–6697.

[13]

Liu, Z. J.; Wang, X. L.; Qin, C.; Zhang, Z. M.; Li, Y. G.; Chen, W. L.; Wang, E. B. Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coord. Chem. Rev. 2016, 313, 94–110.

[14]

Han, X. B.; Li, Y. G.; Zhang, Z. M.; Tan, H. Q.; Lu, Y.; Wang, E. B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493.

[15]

Huang, L.; Wang, S. S.; Zhao, J. W.; Cheng, L.; Yang, G. Y. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642.

[16]

Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.

[17]

Liao, T.; Kou, L. Z.; Du, A. J.; Gu, Y. T.; Sun, Z. Q. Simplest MOF units for effective photodriven hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9159–9166.

[18]

Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.

[19]

Zou, L. L.; Hou, C. C.; Liu, Z.; Pang, H.; Xu, Q. Superlong single-crystal metal-organic framework nanotubes. J. Am. Chem. Soc. 2018, 140, 15393–15401.

[20]

Li, B.; Zhao, Y. M.; Kirchon, A.; Pang, J. D.; Yang, X. Y.; Zhuang, G. L.; Zhou, H. C. Unconventional method for fabricating valence tautomeric materials: Integrating redox center within a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 6822–6826.

[21]

Yang, H. J.; Peng, F.; Dang, C.; Wang, Y.; Hu, D. D.; Zhao, X.; Feng, P. Y.; Bu, X. H. Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn. J. Am. Chem. Soc. 2019, 141, 9808–9812.

[22]

Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.

[23]

Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632.

[24]

Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048.

[25]

He, W. W.; Li, S. L.; Zang, H. Y.; Yang, G. S.; Zhang, S. R.; Su, Z. M.; Lan, Y. Q. Entangled structures in polyoxometalate-based coordination polymers. Coord. Chem. Rev. 2014, 279, 141–160.

[26]

Yu, R. M.; Kuang, X. F.; Wu, X. Y.; Lu, C. Z.; Donahue, J. P. Stabilization and immobilization of polyoxometalates in porous coordination polymers through host-guest interactions. Coord. Chem. Rev. 2009, 253, 2872–2890.

[27]

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

[28]

Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.

[29]

Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.; Wormald, P.; Morris, R. E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016.

[30]

Aidoudi, F. H.; Aldous, D. W.; Goff, R. J.; Slawin, A. M. Z.; Attfield, J. P.; Morris, R. E.; Lightfoot, P. An ionothermally prepared S = 1/2 vanadium oxyfluoride Kagome lattice. Nat. Chem. 2011, 3, 801–806.

[31]

An, H. Y.; Wang, E. B.; Xiao, D. R.; Li, Y. G.; Su, Z. M.; Xu, L. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes. Angew. Chem., Int. Ed. 2006, 45, 904–908.

[32]

An, H. Y.; Wang, E. B.; Li, Y. G.; Zhang, Z. M.; Xu, L. A functionalized polyoxometalate by hexanuclear copper-amino acid coordination complexes. Inorg. Chem. Commun. 2007, 10, 299–302.

[33]

Cao, R. G.; Liu, S. X.; Liu, Y.; Tang, Q.; Wang, L.; Xie, L. H.; Su, Z. M. Organic-inorganic hybrids constructed by Anderson-type polyoxoanions and copper coordination complexes. J. Solid State Chem. 2009, 182, 49–54.

[34]

Pang, H. J.; Zhang, C. J.; Peng, J.; Wang, Y. H.; Sha, J. Q.; Tian, A. X.; Zhang, P. P.; Chen, Y.; Zhu, M.; Su, Z. M. Two new helical compounds based on pitch-tunable Keggin clusters. Eur. J. Inorg. Chem. 2009, 2009, 5175–5180.

[35]

Du, D. Y.; Qin, J. S.; Wang, T. T.; Li, S. L.; Su, Z. M.; Shao, K. Z.; Lan, Y. Q.; Wang, X. L.; Wang, E. B. Polyoxometalate-based crystalline tubular microreactor: Redox-active inorganic-organic hybrid materials producing gold nanoparticles and catalytic properties. Chem. Sci. 2012, 3, 705–710.

[36]

Zhao, J. W.; Li, Y. Z.; Chen, L. J.; Yang, G. Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Commun. 2016, 52, 4418–4445.

[37]

Bassil, B. S.; Kortz, U. Recent advances in lanthanide-containing polyoxotungstates. Z. Anorg. Allg. Chem. 2010, 636, 2222–2231.

[38]

Li, H. L.; Liu, Y. J.; Liu, J. L.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Structural transformation from dimerization to tetramerization of serine-decorated rare-earth-incorporated arsenotungstates induced by the usage of rare-earth salts. Chem.—Eur. J. 2017, 23, 2673–2689.

[39]

Burkholder, E.; Golub, V.; O’Connor, C. J.; Zubieta, J. Solid-state coordination chemistry of the oxomolybdate-organodiphosphonate/nickel-organoimine system: Structural influences of the secondary metal coordination cation and diphosphonate tether lengths. Inorg. Chem. 2004, 43, 7014–7029.

[40]

Liu, J. L.; Huang, M. Y.; Hua, Z. Y.; Dong, Y.; Feng, Z. R.; Sun, T. D.; Chen, C. X. Polyoxometalate-based metal organic frameworks: Recent advances and challenges. ChemistrySelect 2022, 7, e202200546.

[41]

Han, Q. X.; He, C.; Zhao, M.; Qi, B.; Niu, J. Y.; Duan, C. Y. Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 2013, 135, 10186–10189.

[42]

Cui, Z. W.; Lu, J. J.; Lin, H. Y.; Luan, J.; Chang, Z. H.; Li, X. H.; Wang, X. L. Four Keggin-type polyoxometalate-based complexes derived from bis(pyrazine)-bis(amide) ligands for electrochemical sensing of multiple analytes and adsorbing dye molecules. CrystEngComm 2022, 24, 828–836.

[43]
Xu, H. K. ; Lu, K. B. ; Jiang, C. H. ; Wei, X. F. ; Wang, Z. F. ; Ouyang, Y. G. ; Dai, F. N. Electronic regulation of a core-shell NiSe2 catalyst by Co doping to accelerate hydrogen evolution. CrystEngComm, in press, DOI: 10.1039/D2CE01169G.
DOI
[44]

Ding, Y. X.; Zheng, Q. H.; Peng, M. T.; Chen, C.; Zou, K. F.; Dong, B. X.; Liu, W. L.; Teng, Y. L. A new ɛ-Keggin polyoxometalate-based metal-organic framework: From design and synthesis to electrochemical hydrogen evolution. Catal. Commun. 2021, 161, 106367.

[45]

Wang, X.; Li, H.; Lin, J. F.; Wang, C. Y.; Wang, X. L. Capped Keggin type polyoxometalate-based inorganic-organic hybrids involving in situ ligand transformation as supercapacitors and efficient electrochemical sensors for detecting Cr(VI). Inorg. Chem. 2021, 60, 19287–19296.

[46]

Li, K.; Liu, Y. F.; Lin, X. L.; Yang, G. P. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg. Chem. 2022, 61, 6934–6942.

[47]

Liu, B.; Yang, J.; Yang, G. C.; Ma, J. F. Four new three-dimensional polyoxometalate-based metal-organic frameworks constructed from [Mo6O18(O3AsPh)2]4- polyoxoanions and copper(I)-organic fragments: Syntheses, structures, electrochemistry, and photocatalysis properties. Inorg. Chem. 2013, 52, 84–94.

[48]

Lu, K.; Peláez, A. L.; Wu, L. C.; Cao, Y.; Zhu, C. H.; Fu, H. Ionothermal synthesis of five Keggin-type polyoxometalate-based metal-organic frameworks. Inorg. Chem. 2019, 58, 1794–1805.

[49]
Sun, J. M. ; Abednatanzi, S. ; Van Der Voort, P. ; Liu, Y. Y. ; Leus, K. POM@MOF hybrids: Synthesis and applications. Catalysts 2020, 10, 578.
DOI
[50]

Liu, Y. W.; Yang, X.; Miao, J.; Tang, Q.; Liu, S. M.; Shi, Z.; Liu, S. X. Polyoxometalate-functionalized metal-organic frameworks with improved water retention and uniform proton-conducting pathways in three orthogonal directions. Chem. Commun. 2014, 50, 10023–10026.

[51]

Du, Z. Y.; Yu, Y. Z.; Hong, Y. L.; Li, N. F.; Han, Y. M.; Cao, J. P.; Sun, Q.; Mei, H.; Xu, Y. Polyoxometalate-based metal-organic frameworks with unique high-nuclearity water clusters. ACS Appl. Mater. Interfaces 2020, 12, 57174–57181.

[52]

Hou, Y.; Pang, H. J.; Gómez-García, C. J.; Ma, H. Y.; Wang, X. M.; Tan, L. C. Polyoxometalate metal-organic frameworks: Keggin clusters encapsulated into silver-triazole nanocages and open frameworks with supercapacitor performance. Inorg. Chem. 2019, 58, 16028–16039.

[53]

Kuang, X. F.; Wu, X. Y.; Yu, R. M.; Donahue, J. P.; Huang, J. S.; Lu, C. Z. Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages. Nat. Chem. 2010, 2, 461–465.

[54]

Sha, J. Q.; Yang, X. Y.; Chen, Y. Y.; Zhu, P. P.; Song, Y. F.; Jiang, J. Z. Fabrication and electrochemical performance of polyoxometalate-based three-dimensional metal organic frameworks containing carbene nanocages. ACS Appl. Mater. Interfaces 2018, 10, 16660–16665.

[55]

Sha, J. Q.; Zhu, P. P.; Yang, X. Y.; Li, X. N.; Li, X.; Yue, M. B.; Zhou, K. F. Polyoxometalates templated metal Ag-carbene frameworks anodic material for lithium-ion batteries. Inorg. Chem. 2017, 56, 11998–12002.

[56]

Sha, J. Q.; Li, X.; Li, J. S.; Yang, X. Y.; Zhang, H. F.; Yue, M. B.; Zhou, K. F. Acidity considerations in the self-assembly of POM/Ag/trz-based compounds with efficient electrochemical activities in LIBs. Cryst. Growth Des. 2018, 18, 2289–2296.

[57]

Sha, J. Q.; Li, M. T.; Yang, X. Y.; Sheng, N.; Li, J. S.; Zhu, M. L.; Liu, G. D.; Jiang, J. Z. New route toward POM[6]catenane members for lithium-ion batteries. Cryst. Growth Des. 2017, 17, 3775–3782.

[58]

Yang, X. Y.; Wei, T.; Li, J. S.; Sheng, N.; Zhu, P. P.; Sha, J. Q.; Wang, T.; Lan, Y. Q. Polyoxometalate-incorporated metallapillararene/metallacalixarene metal-organic frameworks as anode materials for lithium ion batteries. Inorg. Chem. 2017, 56, 8311–8318.

[59]

Zhai, Q. G.; Wu, X. Y.; Chen, S. M.; Zhao, Z. G.; Lu, C. Z. Construction of Ag/1,2,4-triazole/polyoxometalates hybrid family varying from diverse supramolecular assemblies to 3-D rod-packing framework. Inorg. Chem. 2007, 46, 5046–5058.

[60]

Paille, G.; Gomez-Mingot, M.; Roch-Marchal, C.; Lassalle-Kaiser, B.; Mialane, P.; Fontecave, M.; Mellot-Draznieks, C.; Dolbecq, A. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation. J. Am. Chem. Soc. 2018, 140, 3613–3618.

[61]

Wang, K. P.; Yu, K.; Lv, J. H.; Zhang, M. L.; Meng, F. X.; Zhou, B. B. A host-guest supercapacitor electrode material based on a mixed hexa-transition metal sandwiched arsenotungstate chain and three-dimensional supramolecular metal-organic networks with one-dimensional cavities. Inorg. Chem. 2019, 58, 7947–7957.

[62]

Lan, G. X.; Ni, K. Y.; Veroneau, S. S.; Luo, T. K.; You, E.; Lin, W. B. Nanoscale metal-organic framework hierarchically combines high-Z components for multifarious radio-enhancement. J. Am. Chem. Soc. 2019, 141, 6859–6863.

[63]

Sun, W. L.; An, B. W.; Qi, B.; Liu, T.; Jin, M.; Duan, C. Y. Dual-excitation polyoxometalate-based frameworks for one-pot light-driven hydrogen evolution and oxidative dehydrogenation. ACS Appl. Mater. Interfaces 2018, 10, 13462–13469.

[64]

Yang, Y.; Liu, S. X.; Li, C. C.; Li, S. J.; Ren, G. J.; Wei, F.; Tang, Q. A metal-organic framework based on Wells-Dawson polyoxometalates [As2W18O62]6- template. Inorg. Chem. Commun. 2012, 17, 54–57.

[65]

Zhang, L. J.; Wang, X.; Yang, P. Z.; Tong, N. A lindquist-type polyoxometalate-based metal-organic framework as electrochemical sensor and efficient catalyst for selective oxidation of thioether. Inorg. Chim. Acta 2022, 542, 121125.

[66]

Shi, D. Y.; Zheng, R.; Liu, C. S.; Chen, D. M.; Zhao, J. W.; Du, M. Dual-functionalized mixed Keggin- and Lindqvist-type Cu24-based POM@MOF for visible-light-driven H2 and O2 evolution. Inorg. Chem. 2019, 58, 7229–7235.

[67]

Shi, D. Y.; He, C.; Sun, W. L.; Ming, Z.; Meng, C. G.; Duan, C. Y. A photosensitizing decatungstate-based MOF as heterogeneous photocatalyst for the selective C-H alkylation of aliphatic nitriles. Chem. Commun. 2016, 52, 4714–4717.

[68]

Li, Y. Y.; Leng, C. L.; Zhao, J. W.; Chen, S. D.; Ma, P. T.; Chen, L. J. A six-connected 3-D framework [enH2]2[Cu(en)2]3[H2W12O42]·6H2O constructed from paratungstate-based polyoxometalate units. Inorg. Chem. Commun. 2012, 25, 35–38.

[69]

Lin, B. Z.; Chen, Y. M.; Liu, P. D. A new polymeric chain formed by paradodecatungstate clusters and [Cu(en)2]2+ complexes: Hydrothermal synthesis and characterization of [Cu(en)2]3[{Cu(en)2}2(H2W12O42)]·12H2O. Dalton Trans. 2003, 2474–2477

[70]

Zhu, P. P.; Sheng, N.; Li, M. T.; Li, J. S.; Liu, G. D.; Yang, X. Y.; Sha, J. Q.; Zhu, M. L.; Jiang, J. Z. Fabrication and electrochemical performance of unprecedented POM-based metal-carbene frameworks. J. Mater. Chem. A 2017, 5, 17920–17925.

[71]

Roy, S.; Vemuri, V.; Maiti, S.; Manoj, K. S.; Subbarao, U.; Peter, S. C. Two Keggin-based isostructural POMOF hybrids: Synthesis, crystal structure, and catalytic properties. Inorg. Chem. 2018, 57, 12078–12092.

[72]

Yang, P.; Zhao, W. L.; Shkurenko, A.; Belmabkhout, Y.; Eddaoudi, M.; Dong, X. C.; Alshareef, H. N.; Khashab, N. M. Polyoxometalate-cyclodextrin metal-organic frameworks: From tunable structure to customized storage functionality. J. Am. Chem. Soc. 2019, 141, 1847–1851.

[73]

Xiong, Y. L.; Yu, M. Y.; Guo, T. T.; Yang, J.; Ma, J. F. A nanosized propeller-like polyoxometalate-linked copper(I)-resorcin[4]arene for efficient catalysis. Inorg. Chem. 2020, 59, 15402–15409.

[74]

Dong, B. X.; Bu, F. Y.; Wu, Y. C.; Zhao, J.; Teng, Y. L.; Liu, W. L.; Li, Z. W. Construction of (3, 4)-connected polyoxometalate-based metal-organic frameworks (POMOFs) from triangular carboxylate and tetrahedral Zn4-ε-Keggin. Cryst. Growth Des. 2017, 17, 5309–5317.

[75]

Yu, H. H.; Cui, X. B.; Cui, J. W.; Kong, L.; Duan, W. J.; Xu, J. Q.; Wang, T. G. Hydrothermal synthesis and structural characterization of the first mixed molybdenum-tungsten capped-Keggin polyoxometal complex: {[Co(dien)]4[(AsVO4)MoV8WVI4O332-OH)3]}·2H2O. Dalton Trans. 2008, 195–197

[76]

Dolbecq, A.; Mialane, P.; Sécheresse, F.; Keita, B.; Nadjo, L. Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: From electrocatalytic to optical properties. Chem. Commun. 2012, 48, 8299–8316.

[77]

Dolbecq, A.; Mellot-Draznieks, C.; Mialane, P.; Marrot, J.; Férey, G.; Sécheresse, F. Hybrid 2D and 3D frameworks based on ε-Keggin polyoxometallates: Experiment and simulation. Eur. J. Inorg. Chem. 2005, 2005, 3009–3018.

[78]

Cui, X. B.; Zheng, S. T.; Yang, G. Y. First nickel(II) cation inclusion within the mixed-valence polyoxomolybdate capped with four NiII(en)(H2O) groups: Hydrothermal synthesis and structure of [MoV8MoVI4O302-OH)6(NiIIO4){NiII(en)(H2O)}4]. Z. Anorg. Allg. Chem. 2005, 631, 642–644.

[79]

Rodriguez-Albelo, L. M.; Ruiz-Salvador, A. R.; Sampieri, A.; Lewis, D. W.; Gómez, A.; Nohra, B.; Mialane, P.; Marrot, J.; Sécheresse, F.; Mellot-Draznieks, C. et al. Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): Computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 2009, 131, 16078–16087.

[80]

Wang, Y. Y.; Zhang, M.; Li, S. L.; Zhang, S. R.; Xie, W.; Qin, J. S.; Su, Z. M.; Lan, Y. Q. Diamondoid-structured polymolybdate-based metal-organic frameworks as high-capacity anodes for lithium-ion batteries. Chem. Commun. 2017, 53, 5204–5207.

[81]

Nohra, B.; El Moll, H.; Albelo, L. M. R.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Biboum, R. N.; Lemaire, J.; Keita, B. et al. Polyoxometalate-based metal organic frameworks (POMOFs): Structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 13363–13374.

[82]

Huang, Q.; Wei, T.; Zhang, M.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, W. J.; Liu, J.; Lan, Y. Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance. J. Mater. Chem. A 2017, 5, 8477–8483.

[83]

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem., Int. Ed. 2019, 58, 16110–16114.

[84]

Huang, Q.; Liu, J.; Feng, L.; Wang, Q.; Guan, W.; Dong, L. Z.; Zhang, L.; Yan, L. K.; Lan, Y. Q.; Zhou, H. C. Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. Natl. Sci. Rev. 2020, 7, 53–63.

[85]

Cheng, W. W.; Shen, F. C.; Xue, Y. S.; Luo, X. M.; Fang, M.; Lan, Y. Q.; Xu, Y. A pair of rare three-dimensional chiral polyoxometalate-based metal-organic framework enantiomers featuring superior performance as the anode of lithium-ion battery. ACS Appl. Energy Mater. 2018, 1, 4931–4938.

[86]

Huang, P.; Qin, C.; Wang, X. L.; Sun, C. Y.; Yang, G. S.; Shao, K. Z.; Jiao, Y. Q.; Zhou, K.; Su, Z. M. An unprecedented organic-inorganic hybrid based on the first {Nb10V4O40(OH)2}12- clusters and copper cations. Chem. Commun. 2012, 48, 103–105.

[87]

Guo, G. L.; Xu, Y. Q.; Cao, J.; Hu, C. W. An unprecedented vanadoniobate cluster with ‘trans-vanadium’ bicapped Keggin-type {VNb12O40(VO)2}. Chem. Commun. 2011, 47, 9411–9413.

[88]

Shen, J. Q.; Zhang, Y.; Zhang, Z. M.; Li, Y. G.; Gao, Y. Q.; Wang, E. B. Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity. Chem. Commun. 2014, 50, 6017–6019.

[89]

Wang, Y. J.; Zhou, Y. Y.; Hao, H. G.; Song, M.; Zhang, N.; Yao, S.; Yan, J. H.; Zhang, Z. M.; Lu, T. B. Capped polyoxometalate pillars between metal-organic layers for transferring a supramolecular structure into a covalent 3D framework. Inorg. Chem. 2018, 57, 1342–1349.

[90]

Zhang, R. T.; Xiao, H. P.; Li, Z.; Wang, M.; Xie, Y. F.; Ye, Y. D.; Li, X. X.; Zheng, S. T. Two highly stable inorganic-organic hybrid 3D frameworks based on Cu-Ln incorporated polyoxometalates for selective dye removal and proton conduction. CrystEngComm 2021, 23, 2973–2981.

[91]

Han, Q. X.; Sun, X. P.; Li, J.; Ma, P. T.; Niu, J. Y. Novel isopolyoxotungstate [H2W11O38]8- based metal organic framework: As lewis acid catalyst for cyanosilylation of aromatic aldehydes. Inorg. Chem. 2014, 53, 6107–6112.

[92]

Shi, D. Y.; He, C.; Qi, B.; Chen, C.; Niu, J. Y.; Duan, C. Y. Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation. Chem. Sci. 2015, 6, 1035–1042.

[93]

Jiao, J. C.; Yan, X. M.; Xing, S. Z.; Zhang, T.; Han, Q. X. Design of a polyoxometalate-based metal-organic framework for photocatalytic C(sp3)-H oxidation of toluene. Inorg. Chem. 2022, 61, 2421–2427.

[94]

Si, C.; Liu, F.; Yan, X. M.; Xu, J. B.; Niu, G. Q.; Han, Q. X. Designing a polyoxometalate-incorporated metal-organic framework for reduction of nitroarenes to anilines by sequential proton-coupled electron transfers. Inorg. Chem. 2022, 61, 5335–5342.

[95]

Jiao, J. C.; Sun, H.; Si, C.; Xu, J. B.; Zhang, T.; Han, Q. X. Photocatalytic multielectron reduction of nitroarenes to anilines by utilizing an electron-storable polyoxometalate-based metal-organic framework. ACS Appl. Mater. Interfaces 2022, 14, 16386–16393.

[96]

Wang, J. P.; Duan, X. Y.; Du, X. D.; Niu, J. Y. Novel rare earth germanotungstates and organic hybrid derivatives:  Synthesis and structures of M/[α-GeW11O39] (M = Nd, Sm, Y, Yb) and Sm/[α-GeW11O39](DMSO). Cryst. Growth Des. 2006, 6, 2266–2270.

[97]

Wang, J. P.; Zhao, J. W.; Duan, X. Y.; Niu, J. Y. Syntheses and structures of one- and two-dimensional organic-inorganic hybrid rare earth derivatives based on monovacant Keggin-type polyoxotungstates. Cryst. Growth Des. 2006, 6, 507–513.

[98]

An, H. Y.; Han, Z. B.; Xu, T. Q. Three-dimensional architectures based on lanthanide-substituted double-Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes. Inorg. Chem. 2010, 49, 11403–11414.

[99]

An, H. Y.; Zhang, H.; Chen, Z. F.; Li, Y. G.; Liu, X.; Chen, H. A series of three-dimensional architectures constructed from lanthanide-substituted polyoxometalosilicates and lanthanide cations or lanthanide-organic complexes as linkers. Dalton Trans. 2012, 41, 8390–8400.

[100]

Wang, Z. W.; Zhao, Q.; Chen, C. A.; Sun, J. J.; Lv, H. J.; Yang, G. Y. Chiral {Ni6PW9} cluster-organic framework: Synthesis, structure, and properties. Inorg. Chem. 2022, 61, 7477–7483.

[101]

Zhang, Z.; Wang, Y. L.; Li, H. L.; Sun, K. N.; Yang, G. Y. Syntheses, structures and properties of three organic-inorganic hybrid polyoxotungstates constructed from {Ni6PW9} building blocks: From isolated clusters to 2-D layers. CrystEngComm 2019, 21, 2641–2647.

[102]

Zheng, S. T.; Zhang, J.; Yang, G. Y. Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions. Angew. Chem., Int. Ed. 2008, 47, 3909–3913.

[103]

Chen, Y. H.; Sun, L. H.; Chang, S. Z.; Chen, L. J.; Zhao, J. W. Synergistic effect between different coordination geometries of lanthanides and various coordination modes of 2-picolinic acid ligands tuning three types of rare 3d-4f heterometallic tungstoantimonates. Inorg. Chem. 2018, 57, 15079–15092.

[104]

Wang, X. L.; Zhang, R.; Wang, X.; Lin, H. Y.; Liu, G. C. An effective strategy to construct novel polyoxometalate-based hybrids by deliberately controlling organic ligand transformation in situ. Inorg. Chem. 2016, 55, 6384–6393.

[105]

Li, D. D.; Xu, Q. F.; Li, Y. G.; Qiu, Y. T.; Ma, P. T.; Niu, J. Y.; Wang, J. P. A stable polyoxometalate-based metal-organic framework as highly efficient heterogeneous catalyst for oxidation of alcohols. Inorg. Chem. 2019, 58, 4945–4953.

[106]

Zhu, P. P.; Sun, L. J.; Sheng, N.; Sha, J. Q.; Liu, G. D.; Yu, L.; Qiu, H. B.; Li, S. X. Tuning the helical structures of Wells-Dawson polyoxometalate based hybrid compounds by using isomeric ligands. Cryst. Growth Des. 2016, 16, 3215–3223.

[107]

Wang, X. Q.; Liu, S. X.; Liu, Y. W.; He, D. F.; Li, N.; Miao, J.; Ji, Y. J.; Yang, G. Y. Planar {Ni6} cluster-containing polyoxometalate-based inorganic-organic hybrid compound and its extended structure. Inorg. Chem. 2014, 53, 13130–13135.

[108]

Zheng, S. T.; Yuan, D. Q.; Jia, H. P.; Zhang, J.; Yang, G. Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. From isolated cluster to 1-D chain. Chem. Commun. 2007, 1858–1860

[109]

Zhao, J. W.; Jia, H. P.; Zhang, J.; Zheng, S. T.; Yang, G. Y. A combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions. Part II: From double cluster, dimer, and tetramer to three-dimensional frameworks. Chem.—Eur. J. 2007, 13, 10030–10045.

[110]

Reinoso, S.; Dickman, M. H.; Kortz, U. A novel hexatungstate fragment stabilized by dimethyltin groups: [{(CH3)2Sn}2(W6O22)]4-. Inorg. Chem. 2006, 45, 10422–10424.

[111]

Chen, W. C.; Qin, C.; Li, Y. G.; Zang, H. Y.; Shao, K. Z.; Su, Z. M.; Wang, E. B.; Liu, H. S. Assembly of tetrameric dimethyltin-functionalized selenotungstates: From nanoclusters to one-dimensional chains. Chem. Commun. 2015, 51, 2433–2436.

[112]

Li, X. X.; Wang, Y. X.; Wang, R. H.; Cui, C. Y.; Tian, C. B.; Yang, G. Y. Designed assembly of heterometallic cluster organic frameworks based on Anderson-type polyoxometalate clusters. Angew. Chem., Int. Ed. 2016, 55, 6462–6466.

[113]

Li, X. X.; Deng, C. C.; Zhao, D.; Yu, H.; Zeng, Q. X.; Zheng, S. T. Composite cluster-organic frameworks based on polyoxometalates and copper/cobalt-oxygen clusters. Dalton Trans. 2018, 47, 16408–16412.

[114]

Zhu, M. C.; Huang, Y. Y.; Ma, J. P.; Hu, S. M.; Wang, Y.; Guo, J.; Zhao, Y. X.; Wang, L. S. Coordination polymers based on organic-inorganic hybrid rigid rod comprising a backbone of Anderson-Evans POMs. Cryst. Growth Des. 2019, 19, 925–931.

[115]

Ying, J.; Chen, Y. G.; Wang, X. Y. A series of 0D to 3D Anderson-type polyoxometalate-based compounds obtained under ambient and hydrothermal conditions. CrystEngComm 2019, 21, 1168–1179.

[116]

Sun, C. X.; Zhang, Y. P.; Ying, J.; Jin, L.; Tian, A. X.; Wang, X. L. A series of POM compounds constructed using a flexible ligand containing three coordination groups: Electrocatalytic and photocatalytic reduction and amperometric detection of Cr(VI). New J. Chem. 2022, 46, 2798–2807.

[117]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Cobalt complexes tuned by Anderson-type polyoxometalates and bis-amide derivative ligands featuring a ‘V’-like connector for efficient ampere sensing and the visible-light catalytic reduction of Cr(VI). Dalton Trans. 2022, 51, 7109–7117.

[118]

Li, J. H.; Wang, X. L.; Song, G.; Lin, H. Y.; Wang, X.; Liu, G. C. Various Anderson-type polyoxometalate-based metal-organic complexes induced by diverse solvents: Assembly, structures and selective adsorption for organic dyes. Dalton Trans. 2020, 49, 1265–1275.

[119]

Merkel, M. P.; Anson, C. E.; Kostakis, G. E.; Powell, A. K. Taking the third route for construction of POMOFs: The first use of carboxylate-functionalized MnIII Anderson-Evans POM-hybrid linkers and lanthanide nodes. Cryst. Growth Des. 2021, 21, 3179–3190.

[120]

She, S.; Bian, S. T.; Hao, J.; Zhang, J. W.; Zhang, J.; Wei, Y. G. Aliphatic organoimido derivatives of polyoxometalates containing a bioactive ligand. Chem.—Eur. J. 2014, 20, 16987–16994.

[121]

Zhu, Y.; Yin, P. C.; Xiao, F. P.; Li, D.; Bitterlich, E.; Xiao, Z. C.; Zhang, J.; Hao, J.; Liu, T. B.; Wang, Y. et al. Bottom-up construction of POM-based macrostructures: Coordination assembled paddle-wheel macroclusters and their vesicle-like supramolecular aggregation in solution. J. Am. Chem. Soc. 2013, 135, 17155–17160.

[122]

Li, X. X.; Zhang, L. J.; Cui, C. Y.; Wang, R. H.; Yang, G. Y. Designed construction of cluster organic frameworks from Lindqvist-type polyoxovanadate cluster. Inorg. Chem. 2018, 57, 10323–10330.

[123]

Lin, L. D.; Li, Z.; Zhao, D.; Liu, J. H.; Li, X. X.; Zheng, S. T. Development of a new Lindqvist-like Fe6 cluster secondary building unit for MOFs. Chem. Commun. 2019, 55, 10729–10732.

[124]

Wang, X. L.; Zhang, H. X.; Wang, X.; Zhang, S.; Liu, J. H.; Lin, H. Y.; Liu, G. C. A novel two-fold interpenetrating 3D metal-organic framework based on Lindqvist-type hexamolybdate: Synthesis, structure, electrochemical and photocatalytic properties. Inorg. Chem. Commun. 2018, 88, 60–64.

[125]

Qu, Z. K.; Yu, K.; Zhao, Z. F.; Su, Z. H.; Sha, J. Q.; Wang, C. M.; Zhou, B. B. An organic-inorganic hybrid semiconductor material based on Lindqvist polyoxomolybdate and a tetra-nuclear copper complex containing two different ligands. Dalton Trans. 2014, 43, 6744–6751.

[126]

Tian, H. R.; Zhang, Z.; Dang, T. Y.; Liu, S. M.; Lu, Y.; Liu, S. X. Hollow Lindqvist-like-shaped {V6} cluster-based metal-organic framework for the highly efficient detoxification of mustard gas simulant. Inorg. Chem. 2021, 60, 840–845.

[127]

Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169–7177.

[128]

Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478.

[129]

Wei, Y. Q.; Sun, C.; Chen, Q. S.; Wang, M. S.; Guo, G. C. Significant enhancement of conductance of a hybrid layered molybdate semiconductor by light or heat. Chem. Commun. 2018, 54, 14077–14080.

[130]

Tan, H. Q.; Li, Y. G.; Chen, W. L.; Yan, A. X.; Liu, D.; Wang, E. B. A series of [MnMo9O32]6− based solids: Homochiral transferred from adjacent polyoxoanions to one-, two-, and three-dimensional frameworks. Cryst. Growth Des. 2012, 12, 1111–1117.

[131]

Tanaka, S.; Annaka, M.; Sakai, K. Visible light-induced wateroxidation catalyzed by molybdenum-based polyoxometalates with mono- and dicobalt(III) cores as oxygen-evolving centers. Chem. Commun. 2012, 48, 1653–1655.

[132]

An, H. Y.; Hu, Y.; Wang, L.; Zhou, E. L.; Fei, F.; Su, Z. M. 3D racemic microporous frameworks and 3D chiral supramolecular architectures based on Evans-Showell-type polyoxometalates controlled by the temperature. Cryst. Growth Des. 2015, 15, 164–175.

[133]

Hou, Y. J.; An, H. Y.; Ding, B. J.; Li, Y. Q. Evans-Showell-type polyoxometalate constructing novel 3D inorganic architectures with alkaline earth metal linkers: Syntheses, structures and catalytic properties. Dalton Trans. 2017, 46, 8439–8450.

[134]

Liu, Q. Q.; Lin, H. Y.; Wang, X. L.; Wang, X.; Xu, N.; Tian, Y.; Yang, L.; Li, X. R.; Sun, J. Y. Two novel polyoxometalate-based metal-organic complexes with chiral Waugh-type [MnMo9O32]6− anions as high-efficiency catalytic oxidative desulfurization catalysts. Cryst. Growth Des. 2021, 21, 7015–7022.

[135]

Li, X. M.; Chen, Y. G.; Su, C. N.; Zhou, S.; Tang, Q.; Shi, T. Functionalized pentamolybdodiphosphate-based inorganic-organic hybrids: Synthesis, structure, and properties. Inorg. Chem. 2013, 52, 11422–11427.

[136]

Zhang, M. L.; Lv, J. H.; Yu, K.; Wang, K. P.; Meng, F. X.; Zhou, B. B. An unusual 2, 12-connected 3-D open framework based on {As2Mo6O26}-type polyoxometallate and copper-pyrazole complex. Inorg. Chem. Commun. 2018, 97, 74–78.

[137]

Cong, B. W.; Su, Z. H.; Zhao, Z. F.; Yu, B. Y.; Zhao, W. Q.; Xia, L.; Ma, X. J.; Zhou, B. B. Assembly of six [HxAs2Mo6O26](6−x)− cluster-based hybrid materials from 1D chains to 3D framework with multiple Cu-N complexes. CrystEngComm 2017, 19, 2739–2749.

[138]

Zhang, N.; Hong, L. Y.; Geng, A. F.; Yan, J. H.; Yao, S.; Zhang, Z. M. Extended structural materials constructed from sulfate-centered Preyssler-type polyoxometalate with excellent electrocatalytic property. Chin. Chem. Lett. 2018, 29, 1409–1412.

[139]

Li, Y. Y.; Zhao, J. W.; Wei, Q.; Yang, B. F.; He, H.; Yang, G. Y. Two organic-inorganic hybrid 3D {P5W30}-based heteropolyoxotungstates with transition-metal/Ln-carboxylate-Ln connectors. Chem.—Asian J. 2014, 9, 858–867.

[140]

Tian, H. R.; Liu, Y. W.; Zhang, Z.; Liu, S. M.; Dang, T. Y.; Li, X. H.; Sun, X. W.; Lu, Y.; Liu, S. X. A multicentre synergistic polyoxometalate-based metal-organic framework for one-step selective oxidative cleavage of β-O-4 lignin model compounds. Green Chem. 2020, 22, 248–255.

[141]

Nyman, M. Polyoxoniobate chemistry in the 21st century. Dalton Trans. 2011, 40, 8049–8058.

[142]

Bontchev, R. P.; Nyman, M. Evolution of polyoxoniobate cluster anions. Angew. Chem., Int. Ed. 2006, 45, 6670–6672.

[143]

Niu, J. Y.; Ma, P. T.; Niu, H. Y.; Li, J.; Zhao, J. W.; Song, Y.; Wang, J. P. Giant polyniobate clusters based on [Nb7O22]9− units derived from a Nb6O19 precursor. Chem.—Eur. J. 2007, 13, 8739–8748.

[144]

Wang, Z. L.; Tan, H. Q.; Chen, W. L.; Li, Y. G.; Wang, E. B. A copper(II)-ethylenediamine modified polyoxoniobate with photocatalytic H2 evolution activity under visible light irradiation. Dalton Trans. 2012, 41, 9882–9884.

[145]

Zhu, Z. K.; Lin, L. D.; Zhang, J.; Li, X. X.; Sun, Y. Q.; Zheng, S. T. A rare 4-connected neb-type 3D chiral polyoxometalate framework based on {KNb24O72} clusters. Inorg. Chem. Front. 2020, 7, 3919–3924.

[146]

Zhu, Z. K.; Lin, Y. Y.; Yu, H.; Li, X. X.; Zheng, S. T. Inorganic-organic hybrid polyoxoniobates: Polyoxoniobate metal complex cage and cage framework. Angew. Chem., Int. Ed. 2019, 58, 16864–16868.

[147]

Abramov, P. A.; Komarov, V. Y.; Pischur, D. A.; Sulyaeva, V. S.; Benassi, E.; Sokolov, M. N. Solvatomorphs of (Bu4N)2[{Ag(N2-py)}2Mo8O26]: Structure, colouration and phase transition. CrystEngComm 2021, 23, 8527–8537.

[148]

Li, F. C.; Li, X. L.; Tan, L. K.; Wang, J. T.; Yao, W. Z. Evans-Showell-type polyoxometalate-based metal-organic complexes with novel 3D structures constructed from flexible bis-pyrazine-bis-amide ligands and copper metals: Syntheses, structures, and fluorescence and catalytic properties. Dalton Trans. 2019, 48, 2160–2169.

[149]

Li, F. C.; Tan, L. K.; Li, X. L.; Kong, H. J.; Ge, L. M.; Yue, L. Y.; Han, L. F. Syntheses, structures and catalytic properties of Evans-Showell-type polyoxometalate-based 3D metal-organic complexes constructed from the semi-rigid bis(pyridylformyl)piperazine ligand and transition metals. Dalton Trans. 2019, 48, 5831–5841.

[150]

Lin, L. D.; Zhao, D.; Li, X. X.; Zheng, S. T. Recent advances in zeolite-like cluster organic frameworks. Chem.—Eur. J. 2019, 25, 442–453.

[151]

Liu, H.; Zhang, J.; Xu, X. X.; Wang, Q. A polyoxometalate-based binder-free capacitive deionization electrode for highly efficient sea water desalination. Chem.—Eur. J. 2020, 26, 4403–4409.

[152]

Li, X. H.; He, P.; Wang, T.; Zhang, X. W.; Chen, W. L.; Li, Y. G. Keggin-type polyoxometalate-based ZIF-67 for enhanced photocatalytic nitrogen fixation. ChemSusChem 2020, 13, 2769–2778.

[153]

Su, S. D.; Li, X. M.; Zhang, X.; Zhu, J. T.; Liu, G. D.; Tan, M. Y.; Wang, Y. Y.; Luo, M. Keggin-type SiW12 encapsulated in MIL-101(Cr) as efficient heterogeneous photocatalysts for nitrogen fixation reaction. J. Colloid. Interf. Sci. 2022, 61, 406–415.

[154]

Yu, Z. Y.; Lin, T.; Zhu, C. F.; Li, J. T.; Luo, X. T. Design of trimetallic NiMoFe hollow microspheres with polyoxometalate-based metal-organic frameworks for enhanced oxygen evolution reaction. ChemElectroChem 2021, 8, 1316–1321.

[155]

Wang, W.; Zhang, J.; Lin, K. F.; Dong, Y. Y.; Wang, J. Q.; Hu, B. Y.; Li, J.; Shi, Z.; Hu, Y. J.; Cao, W. et al. Construction of polyoxometalate-based material for eliminating multiple Pb-based defects and enhancing thermal stability of perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2105884.

[156]

Dong, Y. Y.; Zhang, J.; Yang, Y. L.; Wang, J. Q.; Hu, B. Y.; Wang, W.; Cao, W.; Gai, S.; Xia, D. B.; Lin, K. F. et al. Multifunctional nanostructured host-guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 2022, 97, 107184.

[157]

Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004, 104, 3037–3058.

[158]

Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.

[159]

Long, D. L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121.

[160]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[161]

Sloboda-Rozner, D.; Alsters, P. L.; Neumann, R. A water-soluble and “self-assembled” polyoxometalate as a recyclable catalyst for oxidation of alcohols in water with hydrogen peroxide. J. Am. Chem. Soc. 2003, 125, 5280–5281.

[162]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[163]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C. H.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[164]

Rong, C. L.; Shen, X. J.; Wang, Y.; Thomsen, L.; Zhao, T. W.; Lu, Y. B.; Lu, X. Y.; Amal, R.; Zhao, C. Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 2022, 34, 2110103.

[165]

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

[166]

Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. S.; Li, Y. D. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.

[167]

Wang, Z. H.; Wang, X. F.; Tan, Z.; Song, X. Z. Polyoxometalate/metal-organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis. Mater. Today Energy 2021, 19, 100618.

[168]

Li, H.; Yao, S.; Wu, H. L.; Qu, J. Y.; Zhang, Z. M.; Lu, T. B.; Lin, W. B.; Wang, E. B. Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Appl. Catal. B: Environ. 2018, 224, 46–52.

[169]

Zhang, Z. M.; Zhang, T.; Wang, C.; Lin, Z. K.; Long, L. S.; Lin, W. B. Photosensitizing metal-organic framework enabling visible-light-driven proton reduction by a Wells-Dawson-type polyoxometalate. J. Am. Chem. Soc. 2015, 137, 3197–3200.

[170]

Lan, Q.; Zhang, Z. M.; Qin, C.; Wang, X. L.; Li, Y. G.; Tan, H. Q.; Wang, E. B. Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem.—Eur. J. 2016, 22, 15513–15520.

[171]

Ye, L.; Ying, Y. R.; Sun, D. R.; Qiao, J. L.; Huang, H. T. Ultrafine Mo2C nanoparticles embedded in an MOF derived N and P co-doped carbon matrix for an efficient electrocatalytic oxygen reduction reaction in zinc-air batteries. Nanoscale 2022, 14, 2065–2073.

[172]

Song, Y. T.; Peng, Y. W.; Yao, S.; Zhang, P.; Wang, Y. J.; Gu, J. M.; Lu, T. B.; Zhang, Z. M. Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chin. Chem. Lett. 2022, 33, 1047–1050.

[173]

Steinlechner, C.; Junge, H. Renewable methane generation from carbon dioxide and sunlight. Angew. Chem., Int. Ed. 2018, 57, 44–45.

[174]

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

[175]

Han, Q. X.; Qi, B.; Ren, W. M.; He, C.; Niu, J. Y.; Duan, C. Y. Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nat. Commun. 2015, 6, 10007.

[176]

Li, X. X.; Liu, J.; Zhang, L.; Dong, L. Z.; Xin, Z. F.; Li, S. L.; Huang-Fu, X. Q.; Huang, K.; Lan, Y. Q. Hydrophobic polyoxometalate-based metal-organic framework for efficient CO2 photoconversion. ACS Appl. Mater. Interfaces 2019, 11, 25790–25795.

[177]

Fang, Z.; Deng, Z.; Wan, X. Y.; Li, Z. Y.; Ma, X.; Hussain, S.; Ye, Z. Z.; Peng, X. S. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition. Appl. Catal. B: Environ. 2021, 296, 120329.

[178]

Yan, A. X.; Yao, S.; Li, Y. G.; Zhang, Z. M.; Lu, Y.; Chen, W. L.; Wang, E. B. Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chem.—Eur. J. 2014, 20, 6927–6933.

[179]

Kaczmarek, A. M. Eu3+/Tb3+ and Dy3+ POM@MOFs and 2D coordination polymers based on pyridine-2,6-dicarboxylic acid for ratiometric optical temperature sensing. J. Mater. Chem. C 2018, 6, 5916–5925.

[180]

Zhou, E. L.; Qin, C.; Huang, P.; Wang, X. L.; Chen, W. C.; Shao, K. Z.; Su, Z. M. A stable polyoxometalate-pillared metal-organic framework for proton-conducting and colorimetric biosensing. Chem.—Eur. J. 2015, 21, 11894–11898.

[181]

Li, X.; Yang, X. Y.; Sha, J. Q.; Han, T.; Du, C. J.; Sun, Y. J.; Lan, Y. Q. POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for L-cysteine “on-off switch” colorimetric biosensing. ACS Appl. Mater. Interfaces 2019, 11, 16896–16904.

[182]

Tong, Z. B.; Sha, J. Q.; Liu, D. Z.; Xu, M. Q. An unprecedented FeMo6@Ce-Uio-66 nanocomposite with cascade enzyme-mimic activity as colorimetric sensing platform. Chem.—Eur. J. 2022, 28, e202104213.

[183]

Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[184]

Wang, Z. K.; Bi, R.; Liu, J. D.; Wang, K. B.; Mao, F. F.; Wu, H.; Bu, Y. Q.; Song, N. H. Polyoxometalate-based Cu/Zn-MOFs with diverse stereo dimensions as anode materials in lithium ion batteries. Chem. Eng. J. 2021, 404, 127117.

[185]

Yang, X. Y.; Sha, J. Q.; Li, W. J.; Tan, Z. L.; Hou, L. R.; Jiang, J. Z. Ternary cross-vanadium tetra-capped POMOFs@PPy/RGO nanocomposites with hybrid battery-supercapacitor behavior for enhancing lithium battery storage. ACS Sustain. Chem. Eng. 2020, 8, 4667–4675.

[186]

Li, X.; Zhou, K. F.; Tong, Z. B.; Yang, X. Y.; Chen, C. Y.; Shang, X. H.; Sha, J. Q. Heightened integration of POM-based metal-organic frameworks with functionalized single-walled carbon nanotubes for superior energy storage. Chem.—Asian J. 2019, 14, 3424–3430.

[187]

Chai, D. F.; Gómez-García, C. J.; Li, B. N.; Pang, H. J.; Ma, H. Y.; Wang, X. M.; Tan, L. C. Polyoxometalate-based metal-organic frameworks for boosting electrochemical capacitor performance. Chem. Eng. J. 2019, 373, 587–597.

[188]

Wang, H. N.; Zhang, M.; Zhang, A. M.; Shen, F. C.; Wang, X. K.; Sun, S. N.; Chen, Y. J.; Lan, Y. Q. Polyoxometalate-based metal-organic frameworks with conductive polypyrrole for supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 32265–32270.

[189]

Chai, D. F.; Xin, J. J.; Li, B. N.; Pang, H. J.; Ma, H. Y.; Li, K. Q.; Xiao, B. X.; Wang, X. M.; Tan, L. C. Mo-based crystal POMOFs with a high electrochemical capacitor performance. Dalton Trans. 2019, 48, 13026–13033.

[190]

Yang, X. Y.; Li, W. J.; Tan, Z. L.; Sha, J. Q.; Tong, Z. B.; Zhang, Y.; Lan, Y. Q. Polyoxometalate-pillared metal-organic frameworks synthesized by surfactant-assisted strategy and incorporated with carbon nanotubes for energy storage. J. Mater. Chem. A 2020, 8, 25316–25322.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 September 2022
Revised: 28 October 2022
Accepted: 01 November 2022
Published: 30 December 2022
Issue date: March 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21871077, 22071042, 22171070, and 21771052), the Program for Innovation Teams in Science and Technology in Universities of Henan Province (No. 20IRTSTHN004) and the Doctoral Scientific Research Foundation of Henan Normal University (No. 20220016).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return