Journal Home > Online First

Covalently modified polyoxometalates (POMs), which benefit from the synergistic effect between POMs and covalently grafted moieties, have received increasing attention in various fields. Recent studies on covalently modified POMs mainly focus on function-directed POM assemblies. This review summarizes the latest progress (2017–2022) concerning covalently modified POMs from a functional perspective, which can be classified as assembly chemistry, photochemistry, electrochemistry, homogeneous and heterogeneous catalysis, and biological applications. The roles of POMs and covalently grafted moieties in these hybrids, especially the rational design for specific applications, were considered and emphasized.


menu
Abstract
Full text
Outline
About this article

Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials

Show Author's information Huaiying Zhang§Wan-Lei Zhao§Hongqiang LiQinghe ZhuangZeqian SunDongyuan CuiXuejie ChenAo GuoXiang JiSai An ( )Wei ChenYu-Fei Song ( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

§ Huaiying Zhang and Wan-Lei Zhao contributed equally to this work.]]>

Abstract

Covalently modified polyoxometalates (POMs), which benefit from the synergistic effect between POMs and covalently grafted moieties, have received increasing attention in various fields. Recent studies on covalently modified POMs mainly focus on function-directed POM assemblies. This review summarizes the latest progress (2017–2022) concerning covalently modified POMs from a functional perspective, which can be classified as assembly chemistry, photochemistry, electrochemistry, homogeneous and heterogeneous catalysis, and biological applications. The roles of POMs and covalently grafted moieties in these hybrids, especially the rational design for specific applications, were considered and emphasized.

Keywords:

polyoxometalates, covalent modification, molecular assembly, photochemistry, electrochemistry, catalysis, biological application
Received: 07 July 2022 Revised: 06 October 2022 Accepted: 15 October 2022 Published: 22 November 2022
References(123)
[1]

Song, Y. F.; Tsunashima, R. Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev. 2012, 41, 7384–7402.

[2]

Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

[3]

Omwoma, S.; Gore, C. T.; Ji, Y. C.; Hu, C. W.; Song, Y. F. Environmentally benign polyoxometalate materials. Coord. Chem. Rev. 2015, 286, 17–29.

[4]

Liu, R. J.; Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 2021, 11, 2101120.

[5]

Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks. ACS Catal. 2019, 9, 10174–10191.

[6]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[7]

Anjass, M.; Lowe, G. A.; Streb, C. Molecular vanadium oxides for energy conversion and energy storage: Current trends and emerging opportunities. Angew. Chem., Int. Ed. 2021, 60, 7522–7532.

[8]

Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.

[9]

Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432.

[10]

Cameron, J. M.; Guillemot, G.; Galambos, T.; Amin, S. S.; Hampson, E.; Haidaraly, K. M.; Newton, G. N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328.

[11]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[12]

Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.

[13]

Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622.

[14]

Li, B.; Li, W.; Li, H. L.; Wu, L. X. Ionic complexes of metal oxide clusters for versatile self-assemblies. Acc. Chem. Res. 2017, 50, 1391–1399.

[15]

Liu, Q. D.; Wang, X. Polyoxometalate clusters: Sub-nanometer building blocks for construction of advanced materials. Matter 2020, 2, 816–841.

[16]

Li, D.; Liu, Z. N.; Song, J.; Li, H.; Zhang, B. F.; Yin, P. C.; Zheng, Z. N.; Roberts, J. E.; Tsige, M.; Hill, C. L. et al. Cation translocation around single polyoxometalate-organic hybrid cluster regulated by electrostatic and cation-π Interactions. Angew. Chem., Int. Ed. 2017, 56, 3294–3298.

[17]

Marcano, D. E. S.; Lentink, S.; Moussawi, M. A.; Parac-Vogt, T. N. Solution dynamics of hybrid Anderson-Evans polyoxometalates. Inorg. Chem. 2021, 60, 10215–10226.

[18]

Yu, S. J.; Han, Y. K.; Wang, W. Unravelling concentration-regulated self-assembly of a protonated polyoxometalate-polystyrene hybrid. Polymer 2019, 162, 73–79.

[19]

Zhang, L. L.; Miao, W. K.; Ren, L. J.; Yan, Y. K.; Lin, Y.; Wang, W. Twining poly(polyoxometalate) chains into nanoropes. Chem.—Eur. J. 2019, 25, 13396–13401.

[20]

Luo, J. C.; Zhang, B. F.; Yvon, C.; Hutin, M.; Gerislioglu, S.; Wesdemiotis, C.; Cronin, L.; Liu, T. B. Self-assembly of polyoxometalate-peptide hybrids in solution: Elucidating the contributions of multiple possible driving forces. Eur. J. Inorg. Chem. 2019, 2019, 380–386.

[21]

Luo, J. C.; Chen, K.; Yin, P. C.; Li, T.; Wan, G.; Zhang, J.; Ye, S. T.; Bi, X. M.; Pang, Y.; Wei, Y. G. et al. Effect of cation-π interaction on macroionic self-assembly. Angew. Chem., Int. Ed. 2018, 57, 4067–4072.

[22]

Gao, Y. T.; Choudhari, M.; Such, G. K.; Ritchie, C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chem. Sci. 2022, 13, 2510–2527.

[23]

She, S.; Huang, Z. H.; Yin, P. C.; Bayaguud, A.; Jia, H. J.; Huang, Y. C.; Wei, Y.; Wei, Y. G. Buildup of redox-responsive hybrid from polyoxometalate and redox-active conducting oligomer: Its self-assemblies with controllable morphologies. Chem.—Eur. J. 2017, 23, 14860–14865.

[24]
Zhou, Y. F. ; Luo, J. C. ; Liu, T. ; Wen, T. ; Williams-Pavlantos, K. ; Wesdemiotis, C. ; Cheng, S. Z. D. ; Liu, T. B. Molecular geometry-directed self-recognition in the self-assembly of giant amphiphiles. Macromol. Rapid Commun., in press, https://doi.org/10.1002/marc.202200216.
[25]

Luo, J. C.; Liu, T.; Qian, K.; Wei, B. Q.; Hu, Y. H.; Gao, M.; Sun, X. Y.; Lin, Z. W.; Chen, J. H.; Bera, M. K. et al. Continuous curvature change into controllable and responsive onion-like vesicles by rigid sphere-rod amphiphiles. ACS Nano 2020, 14, 1811–1822.

[26]

Wang, X. J.; Hou, C. L.; Yu, C. B.; Xu, Z. Y.; Li, Y. W.; Tian, Q.; Xia, N.; Li, N.; Yan, L. T.; Wang, W. Precise self-assembly of Janus pyramid heteroclusters into core-corona nanodots and nanodot supracrystals: Implications for the construction of virus-like particles and nanomaterials. ACS Appl. Nano Mater. 2022, 5, 5558–5568.

[27]

Ren, L. J.; Wu, H.; Hu, M. B.; Wei, Y. H.; Lin, Y.; Wang, W. Self-assembly of achiral shape amphiphiles into multi-walled nanotubes via helicity-selective nucleation and growth. Chem.—Asian J. 2018, 13, 775–779.

[28]

Liu, H. K.; Ren, L. J.; Wu, H.; Ma, Y. L.; Richter, S.; Godehardt, M.; Kübel, C.; Wang, W. Unraveling the self-assembly of heterocluster Janus dumbbells into hybrid cubosomes with internal double-diamond structure. J. Am. Chem. Soc. 2019, 141, 831–839.

[29]

Wang, X. J.; Yu, C. B.; Yu, S. J.; Wang, W. Solvent-manipulated self-assembly of a heterocluster Janus molecule into multi-dimensional nanostructures. Colloids Surf., A 2022, 633, 127847.

[30]

Hou, X. S.; Zhu, G. L.; Ren, L. J.; Huang, Z. H.; Zhang, R. B.; Ungar, G.; Yan, L. T.; Wang, W. Mesoscale graphene-like honeycomb mono- and multilayers constructed via self-assembly of coclusters. J. Am. Chem. Soc. 2018, 140, 1805–1811.

[31]

Yazigi, F. J.; Wilson, C.; Long, D. L.; Forgan, R. S. Synthetic considerations in the self-assembly of coordination polymers of pyridine-functionalized hybrid Mn-Anderson polyoxometalates. Cryst. Growth Des. 2017, 17, 4739–4748.

[32]

Li, X. X.; Zhang, L. J.; Cui, C. Y.; Wang, R. H.; Yang, G. Y. Designed construction of cluster organic frameworks from Lindqvist-type polyoxovanadate cluster. Inorg. Chem. 2018, 57, 10323–10330.

[33]

Lin, L. D.; Li, Z.; Zhao, D.; Liu, J. H.; Li, X. X.; Zheng, S. T. Development of a new Lindqvist-like Fe6 cluster secondary building unit for MOFs. Chem. Commun. 2019, 55, 10729–10732.

[34]

Merkel, M. P.; Anson, C. E.; Kostakis, G. E.; Powell, A. K. Taking the third route for construction of POMOFs: The first use of carboxylate-functionalized MnIII Anderson-Evans POM-hybrid linkers and lanthanide nodes. Cryst. Growth Des. 2021, 21, 3179–3190.

[35]

Martin, C.; Kastner, K.; Cameron, J. M.; Hampson, E.; Fernandes, J. A.; Gibson, E. K.; Walsh, D. A.; Sans, V.; Newton, G. N. Redox-active hybrid polyoxometalate-stabilised gold nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 14331–14335.

[36]

Piot, M.; Abécassis, B.; Brouri, D.; Troufflard, C.; Proust, A.; Izzet, G. Control of the hierarchical self-assembly of polyoxometalate-based metallomacrocycles by redox trigger and solvent composition. Proc. Natl. Acad. Sci. USA 2018, 115, 8895–8900.

[37]

Hampson, E.; Cameron, J. M.; Watts, J. A.; Newton, G. N. Transition metal decorated soft nanomaterials through modular self-assembly of an asymmetric hybrid polyoxometalate. Chem. Commun. 2020, 56, 8237–8240.

[38]

Centellas, M. S.; Piot, M.; Salles, R.; Proust, A.; Tortech, L.; Brouri, D.; Hupin, S.; Abécassis, B.; Landy, D.; Bo, C. et al. Exploring the self-assembly of dumbbell-shaped polyoxometalate hybrids, from molecular building units to nanostructured soft materials. Chem. Sci. 2020, 11, 11072–11080.

[39]

Salles, R.; Abécassis, B.; Derat, E.; Brouri, D.; Bernard, A.; Zhang, Q. C.; Proust, A.; Desmarets, C.; Izzet, G. Hierarchical self-assembly of polyoxometalate-based organo palladium(II) metallomacrocycles via electrostatic interactions. Inorg. Chem. 2020, 59, 2458–2463.

[40]

Li, X. X.; Deng, C. C.; Zhao, D.; Yu, H.; Zeng, Q. X.; Zheng, S. T. Composite cluster-organic frameworks based on polyoxometalates and copper/cobalt-oxygen clusters. Dalton Trans. 2018, 47, 16408–16412.

[41]

Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918.

[42]

Assaf, K. I.; Nau, W. M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015, 44, 394–418.

[43]

Lin, C. G.; Fura, G. D.; Long, Y.; Xuan, W. M.; Song, Y. F. Polyoxometalate-based supramolecular hydrogels constructed through host-guest interactions. Inorg. Chem. Front. 2017, 4, 789–794.

[44]

Xia, Z. Q.; Lin, C. G.; Yang, Y.; Wang, Y. K.; Wu, Z. P.; Song, Y. F.; Russell, T. P.; Shi, S. W. Polyoxometalate-surfactant assemblies: Responsiveness to orthogonal stimuli. Angew. Chem., Int. Ed. 2022, 61, e202203741.

[45]

Yamase, T. Photoredox chemistry of polyoxometalates as a photocatalyst. Catal. Surv. Asia 2003, 7, 203–217.

[46]

Fujimoto, S.; Cameron, J. M.; Wei, R. J.; Kastner, K.; Robinson, D.; Sans, V.; Newton, G. N.; Oshio, H. A simple approach to the visible-light photoactivation of molecular metal oxides. Inorg. Chem. 2017, 56, 12169–12177.

[47]

Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.

[48]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[49]

Wang, J.; Ma, P. T.; Li, S. J.; Xu, Q. F.; Li, Y. G.; Niu, J. Y.; Wang, J. P. Polyoxotungstate cluster species connected by glutamic acid and europium. Inorg. Chem. 2019, 58, 57–60.

[50]

Parrot, A.; Bernard, A.; Jacquart, A.; Serapian, S. A.; Bo, C.; Derat, E.; Oms, O.; Dolbecq, A.; Proust, A.; Métivier, R. et al. Photochromism and dual-color fluorescence in a polyoxometalate-benzospiropyran molecular switch. Angew. Chem., Int. Ed. 2017, 56, 4872–4876.

[51]

Bazzan, I.; Bolle, P.; Oms, O.; Salmi, H.; Aubry-Barroca, N.; Dolbecq, A.; Serier-Brault, H.; Dessapt, R.; Roger, P.; Mialane, P. The design of new photochromic polymers incorporating covalently or ionically linked spiropyran/polyoxometalate hybrids. J. Mater. Chem. C 2017, 5, 6343–6351.

[52]

Boulmier, A.; Haouas, M.; Tomane, S.; Michely, L.; Dolbecq, A.; Vallée, A.; Brezová, V.; Versace, D. L.; Mialane, P.; Oms, O. Photoactive polyoxometalate/DASA covalent hybrids for photopolymerization in the visible range. Chem.—Eur. J. 2019, 25, 14349–14357.

[53]

Fura, G. D.; Long, Y.; Yan, J.; Chen, W.; Lin, C. G.; Song, Y. F. Synthesis, structural characterization and fluorescence enhancement of chromophore-modified polyoxometalates. Acta Cryst. 2018, C74, 1260–1266.

[54]

Li, L.; Wang, J. R.; Hua, Y.; Guo, Y.; Fu, C.; Sun, Y. N.; Zhang, H. “Reversible” photochromism of polyoxomolybdate-viologen hybrids without the need for proton transfer. J. Mater. Chem. C 2019, 7, 38–42.

[55]

Black, F. A.; Jacquart, A.; Toupalas, G.; Alves, S.; Proust, A.; Clark, I. P.; Gibson, E. A.; Izzet, G. Rapid photoinduced charge injection into covalent polyoxometalate-bodipy conjugates. Chem. Sci. 2018, 9, 5578–5584.

[56]

Zhu, Y. T.; Huang, Y. C.; Li, Q.; Zang, D. J.; Gu, J.; Tang, Y. J.; Wei, Y. G. Polyoxometalate-based photoactive hybrid: Uncover the first crystal structure of covalently linked hexavanadate-porphyrin molecule. Inorg. Chem. 2020, 59, 2575–2583.

[57]

Amthor, S.; Knoll, S.; Heiland, M.; Zedler, L.; Li, C. Y.; Nauroozi, D.; Tobaschus, W.; Mengele, A. K.; Anjass, M.; Schubert, U. S. et al. A photosensitizer-polyoxometalate dyad that enables the decoupling of light and dark reactions for delayed on-demand solar hydrogen production. Nat. Chem. 2022, 14, 321–327.

[58]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[59]

Ma, R.; Liu, N. F.; Lin, T. T.; Zhao, T. B.; Huang, S. L.; Yang, G. Y. Anderson polyoxometalate built-in covalent organic frameworks for enhancing catalytic performances. J. Mater. Chem. A 2020, 8, 8548–8553.

[60]

Di, A.; Schmitt, J.; Da Silva, M. A.; Hossain, K. M. Z.; Mahmoudi, N.; Errington, R. J.; Edler, K. J. Self-assembly of amphiphilic polyoxometalates for the preparation of mesoporous polyoxometalate-titania catalysts. Nanoscale 2020, 12, 22245–22257.

[61]

Huo, Z. H.; Liang, Y. M.; Yang, S.; Zang, D. J.; Farha, R.; Goldmann, M.; Xu, H. L.; Antoine, B.; Matricardi, E.; Izzet, G. et al. Photocurrent generation from visible light irradiation of covalent polyoxometalate-porphyrin copolymers. Electrochim. Acta 2021, 368, 137635.

[62]

Asif, H. M.; Zhou, Y. S.; Zhang, L. J.; Shaheen, N.; Yang, D.; Li, J. Q.; Long, Y.; Iqbal, A.; Li, Y. Q. Covalent synthesis of two hybrids composed of Dawson-type polyoxometalate and porphyrin with remarkable third-order optical nonlinearities reflecting the effect of polyoxometalates. Inorg. Chem. 2017, 56, 9436–9447.

[63]

Iqbal, A.; Asif, H. M.; Zhou, Y. S.; Zhang, L. J.; Wang, T.; Shehzad, F. K.; Ren, X. Y. From simplicity to complexity in grafting Dawson-type polyoxometalates on porphyrin, leading to the formation of new organic-inorganic hybrids for the investigation of third-order optical nonlinearities. Inorg. Chem. 2019, 58, 8763–8774.

[64]

Luo, Y. S.; Maloul, S.; Schönweiz, S.; Wächtler, M.; Streb, C.; Dietzek, B. Yield-not only lifetime-of the photoinduced charge-separated state in iridium complex-polyoxometalate dyads impact their hydrogen evolution reactivity. Chem.—Eur. J. 2020, 26, 8045–8052.

[65]

Luo, Y. S.; Maloul, S.; Endres, P.; Schönweiz, S.; Ritchie, C.; Wächtler, M.; Winter, A.; Schubert, U. S.; Streb, C.; Dietzek, B. Organic linkage controls the photophysical properties of covalent photosensitizer-polyoxometalate hydrogen evolution dyads. Sustainable Energy Fuels 2020, 4, 4688–4693.

[66]

Maloul, S.; Van Den Borg, M.; Müller, C.; Zedler, L.; Mengele, A. K.; Gaissmaier, D.; Jacob, T.; Rau, S.; Dietzek-Ivanšić, B.; Streb, C. Multifunctional polyoxometalate platforms for supramolecular light-driven hydrogen evolution. Chem.—Eur. J. 2021, 27, 16846–16852.

[67]

Cetindere, S.; Clausing, S. T.; Anjass, M.; Luo, Y. S.; Kupfer, S.; Dietzek, B.; Streb, C. Covalent linkage of BODIPY-photosensitizers to Anderson-type polyoxometalates using CLICK chemistry. Chem.—Eur. J. 2021, 27, 17181–17187.

[68]

Benazzi, E.; Karlsson, J.; M'Barek, Y. B.; Chabera, P.; Blanchard, S.; Alves, S.; Proust, A.; Pullerits, T.; Izzet, G.; Gibson, E. A. Acid-triggering of light-induced charge-separation in hybrid organic/inorganic molecular photoactive dyads for harnessing solar energy. Inorg. Chem. Front. 2021, 8, 1610–1618.

[69]

Toupalas, G.; Karlsson, J.; Black, F. A.; Masip-Sánchez, A.; López, X.; M'Barek, Y. B.; Blanchard, S.; Proust, A.; Alves, S.; Chabera, P. et al. Tuning photoinduced electron transfer in POM-bodipy hybrids by controlling the environment: Experiment and theory. Angew. Chem., Int. Ed. 2021, 60, 6518–6525.

[70]

Boulmier, A.; Vacher, A.; Zang, D. J.; Yang, S.; Saad, A.; Marrot, J.; Oms, O.; Mialane, P.; Ledoux, I.; Ruhlmann, L. et al. Anderson-type polyoxometalates functionalized by tetrathiafulvalene groups: Synthesis, electrochemical studies, and NLO properties. Inorg. Chem. 2018, 57, 3742–3752.

[71]

Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem., Int. Ed. 2021, 60, 13310–13316.

[72]

Yu, W. D.; Li, B.; Zhang, Y.; Yan, Q. W.; Yan, J. Discovery of a fullerene-polyoxometalate hybrid exhibiting enhanced photocurrent response. Inorg. Chem. 2020, 59, 5266–5270.

[73]

Zhao, S.; Zhao, X.; Zhang, H.; Li, J.; Zhu, Y. F. Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy 2017, 35, 405–414.

[74]

Zhao, S.; Zhao, X.; Ouyang, S. X.; Zhu, Y. F. Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catal. Sci. Technol. 2018, 8, 1686–1695.

[75]

Yousefi, M.; Eshghi, H.; Karimi-Nazarabad, M. Decoration of g-C3N4 by inorganic cluster of polyoxometalate through organic linker strategy for enhancing photoelectrocatalytic performance under visible light. Int. J. Hydrogen Energy 2022, 47, 3001–3012.

[76]

Chakraborty, B.; Gan-Or, G.; Raula, M.; Gadot, E.; Weinstock, I. A. Design of an inherently-stable water oxidation catalyst. Nat. Commun. 2018, 9, 4896.

[77]

M’Barek, Y. B.; Rosser, T.; Sum, J.; Blanchard, S.; Volatron, F.; Izzet, G.; Salles, R.; Fize, J.; Koepf, M.; Chavarot-Kerlidou, M. et al. Dye-sensitized photocathodes: Boosting photoelectrochemical performances with polyoxometalate electron transfer mediators. ACS Appl. Energy Mater. 2020, 3, 163–169.

[78]

Gurrentz, J. M.; Rose, M. J. Covalent attachment of polyoxometalates to passivated Si(111) substrates: A stable and electronic defect-free Si|POM platform. J. Phys. Chem. C 2021, 125, 14287–14298.

[79]

Lu, Z. Q.; Zhang, L. L.; Yan, Y. K.; Wang, W. Polyelectrolytes of inorganic polyoxometalates: Acids, salts, and complexes. Macromolecules 2021, 54, 6891–6900.

[80]

Lu, Z. Q.; Yin, Z. Y.; Zhang, L. L.; Yan, Y. K.; Jiang, Z. Y.; Wu, H.; Wang, W. Synthesis of proton conductive copolymers of inorganic polyacid cluster polyelectrolytes and PEO bottlebrush polymers. Macromolecules 2022, 55, 3301–3310.

[81]

Li, S. J.; Zhao, Y.; Knoll, S.; Liu, R. L.; Li, G.; Peng, Q. P.; Qiu, P. T.; He, D. F.; Streb, C.; Chen, X. N. High proton-conductivity in covalently linked polyoxometalate-organoboronic acid-polymers. Angew. Chem., Int. Ed. 2021, 60, 16953–16957.

[82]

Motz, A. R.; Kuo, M. C.; Horan, J. L.; Yadav, R.; Seifert, S.; Pandey, T. P.; Galioto, S.; Yang, Y.; Dale, N. V.; Hamrock, S. J. et al. Heteropoly acid functionalized fluoroelastomer with outstanding chemical durability and performance for vehicular fuel cells. Energy Environ. Sci. 2018, 11, 1499–1509.

[83]

Motz, A. R.; Kuo, M. C.; Bender, G.; Pivovar, B. S.; Herring, A. M. Chemical stability via radical decomposition using silicotungstic acid moieties for polymer electrolyte fuel cells. J. Electrochem. Soc. 2018, 165, F1264–F1269.

[84]

Chang, J. N.; Zhang, M.; Gao, G. K.; Lu, M.; Wang, Y. R.; Jiang, C.; Li, S. L.; Chen, Y. F.; Lan, Y. Q. Construction of an electron bridge in polyoxometalates/graphene oxide ultrathin nanosheets to boost the lithium storage performance. Energy Fuels 2020, 34, 16968–16977.

[85]

Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.

[86]

Alshehri, S. A.; Al-Yasari, A.; Marken, F.; Fielden, J. Covalently linked polyoxometalate-polypyrrole hybrids: Electropolymer materials with dual-mode enhanced capacitive energy storage. Macromolecules 2020, 53, 11120–11129.

[87]

Huang, B.; Ke, D. G.; Xiong, Z. L.; Wang, Y.; Hu, K. H.; Jiang, P.; Liang, M. H.; Xiao, Z. C.; Wu, P. F. Covalent hybrid materials between polyoxometalates and organic molecules for enhanced electrochemical properties. J. Mater. Sci. 2020, 55, 5554–5570.

[88]

Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

[89]

Tourneur, J.; Fabre, B.; Loget, G.; Vacher, A.; Mériadec, C.; Ababou-Girard, S.; Gouttefangeas, F.; Joanny, L.; Cadot, E.; Haouas, M. et al. Molecular and material engineering of photocathodes derivatized with polyoxometalate-supported {Mo3S4} HER catalysts. J. Am. Chem. Soc. 2019, 141, 11954–11962.

[90]

Wang, Y. J.; Zhou, Y. Y.; Hao, H. G.; Song, M.; Zhang, N.; Yao, S.; Yan, J. H.; Zhang, Z. M.; Lu, T. B. Capped polyoxometalate pillars between metal-organic layers for transferring a supramolecular structure into a covalent 3D framework. Inorg. Chem. 2018, 57, 1342–1349.

[91]

Laurans, M.; Francesca, K. D.; Volatron, F.; Izzet, G.; Guerin, D.; Vuillaume, D.; Lenfant, S.; Proust, A. Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions. Nanoscale 2018, 10, 17156–17165.

[92]

Laurans, M.; Trinh, K.; Francesca, K. D.; Izzet, G.; Alves, S.; Derat, E.; Humblot, V.; Pluchery, O.; Vuillaume, D.; Lenfant, S. et al. Covalent grafting of polyoxometalate hybrids onto flat silicon/silicon oxide: Insights from POMs layers on oxides. ACS Appl. Mater. Interfaces 2020, 12, 48109–48123.

[93]

Wu, C. L.; Qiao, X. H.; Robertson, C. M.; Higgins, S. J.; Cai, C. X.; Nichols, R. J.; Vezzoli, A. A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem., Int. Ed. 2020, 59, 12029–12034.

[94]

Lian, L. F.; Chen, X.; Yi, X. F.; Liu, Y. B.; Chen, W.; Zheng, A. M.; Miras, H. N.; Song, Y. F. Modulation of self-separating molecular catalysts for highly efficient biomass transformations. Chem.—Eur. J. 2020, 26, 11900–11908.

[95]

Lian, L. F.; Zhang, H. Y.; An, S.; Chen, W.; Song, Y. F. Polyoxometalates-based heterogeneous catalysts in acid catalysis. Sci. China Chem. 2021, 64, 1117–1130.

[96]

Lian, L. F.; Liu, Y. B.; Yi, X. F.; Hu, H. B.; Chen, X.; Li, H. Q.; Chen, W.; Zheng, A. M.; Song, Y. F. Covalently tethering disulfonic acid moieties onto polyoxometalate boosts acid strength and catalytic performance for hydroxyalkylation/alkylation reaction. Sci. China Chem. 2022, 65, 699–709.

[97]

Wang, J. J.; Jiang, F.; Tao, C. F.; Yu, H.; Ruhlmann, L.; Wei, Y. G. Oxidative esterification of alcohols by a single-side organically decorated Anderson-type chrome-based catalyst. Green Chem. 2021, 23, 2652–2657.

[98]

Zhang, T.; Mazaud, L.; Chamoreau, L. M.; Paris, C.; Proust, A.; Guillemot, G. Unveiling the active surface sites in heterogeneous titanium-based silicalite epoxidation catalysts: Input of silanol-functionalized polyoxotungstates as soluble analogues. ACS Catal. 2018, 8, 2330–2342.

[99]

Solé-Daura, A.; Zhang, T.; Fouilloux, H.; Robert, C.; Thomas, C. M.; Chamoreau, L. M.; Carbó, J. J.; Proust, A.; Guillemot, G.; Poblet, J. M. Catalyst design for alkene epoxidation by molecular analogues of heterogeneous titanium-silicalite catalysts. ACS Catal. 2020, 10, 4737–4750.

[100]

Chen, K.; Bayaguud, A.; Li, H.; Chu, Y.; Zhang, H. C.; Jia, H. L.; Zhang, B. F.; Xiao, Z. C.; Wu, P. F.; Liu, T. B. et al. Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants. Nano Res. 2018, 11, 1313–1321.

[101]

Hu, G. C.; Chang, W.; An, S.; Qi, B.; Song, Y. F. Self-assembly of reverse micelle nanoreactors by zwitterionic polyoxometalate-based surfactants for high selective production of β-hydroxyl peroxides. Chin. Chem. Lett. 2022, 33, 3968–3972.

[102]

Bai, X. L.; Huang, X.; Wen, L.; Song, N. Z.; Zhang, J.; Zhang, Y.; Zhao, Y. X. A new strategy for the selective oxidation of alcohols catalyzed by a polyoxometalate-based hybrid surfactant in biphasic systems. Chem. Commun. 2019, 55, 3598–3601.

[103]

Syrgiannis, Z.; Trautwein, G.; Calvaresi, M.; Modugno, G.; Zerbetto, F.; Carraro, M.; Prato, M.; Bonchio, M. Controlling size-dispersion of single walled carbon nanotubes by interaction with polyoxometalates armed with a tryptophan tweezer. Eur. J. Inorg. Chem. 2019, 2019, 374–379.

[104]

Sullivan, K. P.; Neiwert, W. A.; Zeng, H. D.; Mehta, A. K.; Yin, Q. S.; Hillesheim, D. A.; Vivek, S.; Yin, P. C.; Collins-Wildman, D. L.; Weeks, E. R. et al. Polyoxometalate-based gelating networks for entrapment and catalytic decontamination. Chem. Commun. 2017, 53, 11480–11483.

[105]

Zhao, Y. ; Wang, Z. F. ; Gao, J. ; Zhao, Z. F. ; Li, X. ; Wang, T. ; Cheng, P. ; Ma, S. Q. ; Chen, Y. ; Zhang, Z. J. COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale 2020, 12, 21218–21224.

[106]

Zhang, J. P.; Miao, Z. L.; Yan, J.; Zhang, X.; Li, X. Z.; Zhang, Q. Y.; Yan, Y. Synthesis of negative-charged metal-containing cyclomatrix polyphosphazene microspheres based on polyoxometalates and application in charge-selective dye adsorption. Macromol. Rapid Commun. 2019, 40, 1800730.

[107]

Deng, L.; Dong, X.; Zhou, Z. H. Intrinsic molybdenum-based POMOFs with impressive gas adsorptions and photochromism. Chem.—Eur. J. 2021, 27, 9643–9653.

[108]

Makrygenni, O.; Secret, E.; Michel, A.; Brouri, D.; Dupuis, V.; Proust, A.; Siaugue, J. M.; Villanneau, R. Heteropolytungstate-decorated core-shell magnetic nanoparticles: A covalent strategy for polyoxometalate-based hybrid nanomaterials. J. Colloid Interface Sci. 2018, 514, 49–58.

[109]

Liu, Y. F.; Zuo, P.; Wang, R. X.; Liu, Y. Q.; Jiao, W. Z. Covalent immobilization of Dawson polyoxometalates on hairy particles and its catalytic properties for the oxidation desulfurization of tetrahydrothiophene. J. Cleaner Prod. 2020, 274, 122774.

[110]

Liu, Y. F.; Wang, F.; Lv, Y.; Yu, S. S.; Wang, R. X.; Jiao, W. Z. Three-dimensional graphene oxide covalently functionalized with Dawson-type polyoxotungstates for oxidative desulfurization of model fuels. Ind. Eng. Chem. Res. 2021, 60, 114–127.

[111]

Zhang, X. Y.; Li, Y. M.; Li, Y.; Wang, S. T.; Wang, X. H. Polyoxometalate immobilized on graphene via click reaction for simultaneous dismutation of H2O2 and oxidation of sulfur mustard simulant. ACS Appl. Nano Mater. 2019, 2, 6971–6981.

[112]

Gao, N.; Liu, Z. Q.; Zhang, H. C.; Liu, C.; Yu, D. Q.; Ren, J. S.; Qu, X. G. Site-directed chemical modification of amyloid by polyoxometalates for inhibition of protein misfolding and aggregation. Angew. Chem., Int. Ed. 2022, 61, e202115336.

[113]

Alizadeh, M.; Yadollahi, B.; Kajani, A. A. Folic acid bonded (Bu4N)5H4[P2W15V3O62] as a smart hybrid compound for cancer cells targeting. Polyhedron 2021, 210, 115510.

[114]

Karimian, D.; Yadollahi, B.; Mirkhani, V. Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous Mesoporous Mater. 2017, 247, 23–30.

[115]

Xu, W.; Cao, J. F.; Lin, Y. N.; Shu, Y.; Wang, J. H. Functionalized polyoxometalate microspheres ensure selective adsorption of phosphoproteins and glycoproteins. Chem. Commun. 2021, 57, 3367–3370.

[116]

Modugno, G.; Fabbretti, E.; Vedove, A. D.; Da Ros, T.; Maccato, C.; Hosseini, H. S.; Bonchio, M.; Carraro, M. Tracking fluorescent polyoxometalates within cells. Eur. J. Inorg. Chem. 2018, 2018, 4955–4961.

[117]

Wu, K. H.; Chang, Y. C.; Wang, J. C. Immobilization of polyoxometalate on aminosilane-modified silicate: Synthesis, characterization and antibacterial performance. Mater. Express 2019, 9, 970–977.

[118]

Soria-Carrera, H.; Atrián-Blasco, E.; De La Fuente, J. M.; Mitchell, S. G.; Martín-Rapún, R. Polyoxometalate-polypeptide nanoassemblies as peroxidase surrogates with antibiofilm properties. Nanoscale 2022, 14, 5999–6006.

[119]

Olsen, M. R.; Colliard, I.; Rahman, T.; Miyaishi, T. C.; Harper, B.; Harper, S.; Nyman, M. Hybrid polyoxometalate salt adhesion by butyltin functionalization. ACS Appl. Mater. Interfaces 2021, 13, 19497–19506.

[120]

Soria-Carrera, H.; Franco-Castillo, I.; Romero, P.; Martín, S.; De La Fuente, J. M.; Mitchell, S. G.; Martín-Rapún, R. On-POM ring-opening polymerisation of N-carboxyanhydrides. Angew. Chem., Int. Ed. 2021, 60, 3449–3453.

[121]

Aureliano, M.; Gumerova, N. I.; Sciortino, G.; Garribba, E.; Rompel, A.; Crans, D. C. Polyoxovanadates with emerging biomedical activities. Coord. Chem. Rev. 2021, 447, 214143.

[122]

Reddy, P. G.; Angajala, G.; Matharoo, N.; Pradeep, C. P. Vanadium cluster-based inorganic-organic covalent hybrids: Synthesis, structure and in vitro antioxidant properties. ChemistrySelect 2017, 2, 11235–11239.

[123]

Chen, K.; Jia, H. L.; Liu, Y.; Yin, P. C.; Wei, Y. G. Insulin-sensitizing activity of sub-nanoscaled polyalkoxyvanadate clusters. Adv. Biosyst. 2020, 4, 1900281.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 July 2022
Revised: 06 October 2022
Accepted: 15 October 2022
Published: 22 November 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 22178019, 21625101, and 2180811), the Natural Science Foundation of Beijing (No. 2202039), the National Key Research and Development Program of China (No. 2017YFB0307303), and the Fundamental Research Funds for the Central Universities (Nos. XK1802-6, XK1803-05, XK1902, and 12060093063).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return