Journal Home > Volume 1 , Issue 2

The design and construction of polyoxometalate (POM)-templated silver clusters have received increasing attention, not only due to their aesthetic structures but also to their wide applications in chromatic materials, magnetism, electronics, and fluorescence. Among various POM-templated silver clusters, asymmetrically-wrapped POM–silver clusters have unusual structures: POMs have exposed surfaces and an asymmetrically-connected silver shell, which endows the clusters with distinctive properties, such as redox and electrocatalytic activities. This review summarizes recent developments in this field, highlighting the syntheses, structures, and properties of the asymmetrically-wrapped POM–silver clusters. The formation mechanisms, challenges, and perspectives of such clusters are also discussed. We believe that this review will motivate the development of the asymmetrical templation effect of POM in silver clusters.


menu
Abstract
Full text
Outline
About this article

Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters

Show Author's information Jia-Yang Shi§Rakesh Kumar Gupta§Yong-Kai DengDi SunZhi Wang ( )
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

Jia-Yang Shi and Rakesh Kumar Gupta contributed equally to this work.

Abstract

The design and construction of polyoxometalate (POM)-templated silver clusters have received increasing attention, not only due to their aesthetic structures but also to their wide applications in chromatic materials, magnetism, electronics, and fluorescence. Among various POM-templated silver clusters, asymmetrically-wrapped POM–silver clusters have unusual structures: POMs have exposed surfaces and an asymmetrically-connected silver shell, which endows the clusters with distinctive properties, such as redox and electrocatalytic activities. This review summarizes recent developments in this field, highlighting the syntheses, structures, and properties of the asymmetrically-wrapped POM–silver clusters. The formation mechanisms, challenges, and perspectives of such clusters are also discussed. We believe that this review will motivate the development of the asymmetrical templation effect of POM in silver clusters.

Keywords: electrochemical properties, polyoxometalates, structures, asymmetrical templation effect, silver clusters, syntheses

References(54)

[1]

Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.

[2]

Schubert, U. Cluster-based inorganic-organic hybrid materials. Chem. Soc. Rev. 2011, 40, 575–582.

[3]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[4]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[5]

Tang, Q.; Hu, G. X.; Fung, V.; Jiang, D. E. Insights into interfaces, stability, electronic properties, and catalytic activities of atomically precise metal nanoclusters from first principles. Acc. Chem. Res. 2018, 51, 2793–2802.

[6]

Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663.

[7]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[8]

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

[9]

Wang, Z.; Gupta, R. K.; Luo, G. G.; Sun, D. Recent progress in inorganic anions templated silver nanoclusters: Synthesis, structures and properties. Chem. Rec. 2020, 20, 389–402.

[10]

Proust, A.; Thouvenot, R.; Gouzerh, P. Functionalization of polyoxometalates: Towards advanced applications in catalysis and materials science. Chem. Commun. 2008, 1837–1852

[11]

Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048.

[12]

Hill, C. L. Introduction:   Polyoxometalates-multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem. Rev. 1998, 98, 1–2.

[13]

Clemente-Juan, J. M.; Coronado, E. Magnetic clusters from polyoxometalate complexes. Coord. Chem. Rev. 1999, 193−195, 361–394.

[14]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[15]

Long, D. L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121.

[16]

Kortz, U.; Müller, A.; Van Slageren, J.; Schnack, J.; Dalal, N. S.; Dressel, M. Polyoxometalates: Fascinating structures, unique magnetic properties. Coord. Chem. Rev. 2009, 253, 2315–2327.

[17]

Xiao, F. P.; Hao, J.; Zhang, J.; Lv, C. L.; Yin, P. C.; Wang, L. S.; Wei, Y. G. Polyoxometalatocyclophanes: Controlled assembly of polyoxometalate-based chiral metallamacrocycles from achiral building blocks. J. Am. Chem. Soc. 2010, 132, 5956–5957.

[18]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[19]

Bassil, B. S.; Ibrahim, M.; Al-Oweini, R.; Asano, M.; Wang, Z. X.; Van Tol, J.; Dalal, N. S.; Choi, K. Y.; Ngo Biboum, R.; Keita, B. et al. A planar Mn19(OH)1226+ unit incorporated in a 60-tungsto-6-silicate polyanion. Angew. Chem., Int. Ed. 2011, 50, 5961–5964.

[20]

Mitchell, S. G.; Molina, P. I.; Khanra, S.; Miras, H. N.; Prescimone, A.; Cooper, G. J. T.; Winter, R. S.; Brechin, E. K.; Long, D. L.; Cogdell, R. J. et al. A mixed-valence manganese cubane trapped by inequivalent trilacunary polyoxometalate ligands. Angew. Chem., Int. Ed. 2011, 123, 9320–9323.

[21]

Lydon, C.; Busche, C.; Miras, H. N.; Delf, A.; Long, D. L.; Yellowlees, L.; Cronin, L. Nanoscale growth of molecular oxides: Assembly of a {V6} double cubane between two lacunary {P2W15} polyoxometalates. Angew. Chem., Int. Ed. 2012, 124, 2157–2160.

[22]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[23]

Botar, B.; Ellern, A.; Hermann, R.; Kögerler, P. Electronic control of spin coupling in keplerate-type polyoxomolybdates. Angew. Chem., Int. Ed. 2009, 48, 9080–9083.

[24]

Liu, J. W.; Su, H. F.; Wang, Z.; Li, Y. A.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. A giant 90-nucleus silver cluster templated by hetero-anions. Chem. Commun. 2018, 54, 4461–4464.

[25]

Li, Y. Y.; Gao, F.; Beves, J. E.; Li, Y. Z.; Zuo, J. L. A giant metallo-supramolecular cage encapsulating a single-molecule magnet. Chem. Commun. 2013, 49, 3658–3660.

[26]

Qiao, J.; Shi, K.; Wang, Q. M. A giant silver alkynyl cage with sixty silver(I) ions clustered around polyoxometalate templates. Angew. Chem., Int. Ed. 2010, 49, 1765–1767.

[27]

Gao, G. G.; Cheng, P. S.; Mak, T. C. W. Acid-induced surface functionalization of polyoxometalate by enclosure in a polyhedral silver-alkynyl cage. J. Am. Chem. Soc. 2009, 131, 18257–18259.

[28]

Jiang, Z. G.; Shi, K.; Lin, Y. M.; Wang, Q. M. [Ag70(PW9O34)2(tBuC≡C)44(H2O)2]8+: Ionothermal synthesis of a silver cluster encapsulating lacunary polyoxometalate Ions. Chem Commun 2014, 50, 2353–2355.

[29]

Li, X. Y.; Tan, Y. Z.; Yu, K.; Wang, X. P.; Zhao, Y. Q.; Sun, D.; Zheng, L. S. Atom-precise polyoxometalate-Ag2S core-shell nanoparticles. Chem.—Asian J. 2015, 10, 1295–1298.

[30]

Wang, Z.; Sun, H. T.; Kurmoo, M.; Liu, Q. Y.; Zhuang, G. L.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D. Carboxylic acid stimulated silver shell isomerism in a triple core-shell Ag84 nanocluster. Chem. Sci. 2019, 10, 4862–4867.

[31]

Zhang, S. S.; Su, H. F.; Wang, Z.; Wang, X. P.; Chen, W. X.; Zhao, Q. Q.; Tung, C. H.; Sun, D.; Zheng, L. S. Elimination-fusion self-assembly of a nanometer-scale 72-nucleus silver cluster caging a pair of [EuW10O36]9− polyoxometalates. Chem.—Eur. J. 2018, 24, 1998–2003.

[32]

Wang, Z.; Su, H. F.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D.; Zheng, L. S. Johnson solids: Anion-templated silver thiolate clusters capped by sulfonate. Chem.—Eur. J. 2018, 24, 1640–1650.

[33]

Huang, R. W.; Xu, Q. Q.; Lu, H. L.; Guo, X. K.; Zang, S. Q.; Gao, G. G.; Tang, M. S.; Mak, T. C. W. Self-assembly of an unprecedented polyoxomolybdate anion [Mo20O66]12− in a giant peanut-like 62-core silver-thiolate nanocluster. Nanoscale 2015, 7, 7151–7154.

[34]

Xie, Y. P.; Mak, T. C. W. Silver(I)-ethynide clusters constructed with phosphonate-functionized polyoxovanadates. J. Am. Chem. Soc. 2011, 133, 3760–3763.

[35]

Liu, K. G.; Liu, X. Y.; Guan, Z. J.; Shi, K.; Lin, Y. M.; Wang, Q. M. The transformation of polyoxometalates in the formation of intercluster compound [Ag41(α-SiW10O37)(tBuC≡C)27(CH3CN)3][β-SiW12O40]. Chem. Commun. 2016, 52, 3801–3804.

[36]

Su, Y. M.; Wang, Z.; Zhuang, G. L.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D. Unusual Fcc-structured Ag10 kernels trapped in Ag70 nanoclusters. Chem. Sci. 2019, 10, 564–568.

[37]

Pan, Z. H.; Deng, C. L.; Wang, Z.; Lin, J. Q.; Luo, G. G.; Sun, D. Silver clusters templated by homo- and hetero-anions. CrystEngComm 2020, 22, 3736–3748.

[38]

Ge, R.; Li, X. X.; Zheng, S. T. Recent advances in polyoxometalate-templated high-nuclear silver clusters. Coord. Chem. Rev. 2021, 435, 213787.

[39]

Xie, Y. P.; Mak, T. C. W. High-nuclearity silver ethynide clusters assembled with phosphonate and metavanadate precursors. Angew. Chem., Int. Ed. 2012, 51, 8783–8786.

[40]

Xie, Y. P.; Mak, T. C. W. A pyrovanadate-templated silver(I)-ethynide cluster circumscribed by macrocyclic polyoxovanadate(V). Chem. Commun. 2012, 48, 1123–1125.

[41]

Liu, J. W.; Wang, Z.; Chai, Y. M.; Kurmoo, M.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D. Core modulation of 70-nuclei core-shell silver nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 6276–6279.

[42]

Duan, G. X.; Xie, Y. P.; Jin, J. L.; Bao, L. P.; Lu, X.; Mak, T. C. W. High-nuclearity heterometallic tert-butylethynide clusters assembled with tert-butylphosphonate. Chem.—Eur. J. 2018, 24, 6762–6768.

[43]

Wang, Z.; Zhu, Y. J.; Li, Y. Z.; Zhuang, G. L.; Song, K. P.; Gao, Z. Y.; Dou, J. M.; Kurmoo, M.; Tung, C. H.; Sun, D. Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nat. Commun. 2022, 13, 1802.

[44]

Wang, Z.; Li, L.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Zheng, L. S.; Sun, D. Solvent-controlled condensation of [Mo2O5(PTC4A)2]6− metalloligand in stepwise assembly of hexagonal and rectangular Ag18 nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202200823.

[45]

Zhang, S. S.; Liu, R. C.; Zhang, X. C.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C. H.; Sun, D. Core engineering of paired core-shell silver nanoclusters. Sci. China Chem. 2021, 64, 2118–2124.

[46]

Wang, Z.; Su, H. F.; Zhang, L. P.; Dou, J. M.; Tung, C. H.; Sun, D.; Zheng, L. S. Stepwise assembly of Ag42 nanocalices based on a MoVI-anchored thiacalix[4]arene metalloligand. ACS Nano 2022, 16, 4500–4507.

[47]

Li, Y. H.; Wang, Z. Y.; Ma, B.; Xu, H.; Zang, S. Q.; Mak, T. C. W. Self-assembly of thiolate-protected silver coordination polymers regulated by POMs. Nanoscale 2020, 12, 10944–10948.

[48]

Gruber, F.; Jansen, M. {[Ag42(CO3)(C≡CtBu)27(CH3CN)2][CoW12O40]2}[BF4]: An intercluster sandwich compound. Angew. Chem., Int. Ed. 2010, 49, 4924–4926.

[49]

Kurasawa, M.; Arisaka, F.; Ozeki, T. Asymmetrically fused polyoxometalate-silver alkynide composite cluster. Inorg. Chem. 2015, 54, 1650–1654.

[50]

Tamari, S.; Ono, K.; Hashimoto, M.; Ozeki, T. Control over the preference for binding sites of polyoxometalates to silver ethynide clusters by surface charge modification. Dalton Trans. 2015, 44, 19056–19058.

[51]

Zhang, S. S.; Chen, J. Y.; Li, K.; Yuan, J. D.; Su, H. F.; Wang, Z.; Kurmoo, M.; Li, Y. Z.; Gao, Z. Y.; Tung, C. H. et al. Janus cluster: Asymmetric coverage of a Ag43 cluster on the symmetric preyssler P5W30 polyoxometalate. Chem. Mater. 2021, 33, 9708–9714.

[52]

Jansen, M. Homoatomic d10-d10 interactions: Their effects on structure and chemical and physical properties. Angew. Chem., Int. Ed. 1987, 26, 1098–1110.

[53]

Wang, X. L.; Li, J.; Tian, A. X.; Lin, H. Y.; Liu, G. C.; Hu, H. L. A new compound based on preyssler-type P5W30 Anion modified by CoII and flexible bis(benzimidazole) ligand. Inorg. Chem. Commun. 2011, 14, 103–106.

[54]

Yang, C. Y.; Zhang, L. C.; Wang, Z. J.; Wang, L.; Li, X. H.; Zhu, Z. M. Three new extended preyssler-type polyoxometalates modified by transition metal-2,2′-biimidazole complexes. J. Solid State Chem. 2012, 194, 270–276.

Publication history
Copyright
Rights and permissions

Publication history

Received: 30 August 2022
Revised: 04 October 2022
Accepted: 15 October 2022
Published: 21 November 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return