Journal Home > Volume 1 , Issue 1

Herein, we present a novel cage-cluster-based framework composed of Ti4L6 (L = embonate) tetrahedra and [Pb4(µ3-OH)4]4+ cubane-like clusters that also exhibits high stability in water, air, and other common solvents. According to the topology study, it exhibits a chiral srs-type network. Integrating titanium cages and lead-oxo clusters into a rigid cage-cluster-based framework significantly enhances its third-order nonlinear optical (NLO) property.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Combining Ti4(embonate)6 cages and [Pb4(OH)4]4+ clusters for enhanced third-order nonlinear optical property

Show Author's information Rui-Yan ChenYan-Ping He ( )Jian Zhang ( )
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Abstract

Herein, we present a novel cage-cluster-based framework composed of Ti4L6 (L = embonate) tetrahedra and [Pb4(µ3-OH)4]4+ cubane-like clusters that also exhibits high stability in water, air, and other common solvents. According to the topology study, it exhibits a chiral srs-type network. Integrating titanium cages and lead-oxo clusters into a rigid cage-cluster-based framework significantly enhances its third-order nonlinear optical (NLO) property.

Keywords: nonlinear optics, cage-cluster-based framework, titanium cage, multistage assembly

References(35)

[1]

Bicalho, H. A.; Donnarumma, P. R.; Quezada-Novoa, V.; Titi, H. M.; Howarth, A. J. Remodelling a shp: Transmetalation in a rare-earth cluster-based metal-organic framework. Inorg. Chem. 2021, 60, 11795–11802.

[2]

Chen, Z. J.; Hanna, S. L.; Redfern, L. R.; Alezi, D.; Islamoglu, T.; Farha, O. K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 2019, 386, 32–49.

[3]

Chen, Z. J.; Jiang, H.; Li, M.; O'Keeffe, M.; Eddaoudi, M. Reticular chemistry 3.2: Typical minimal edge-transitive derived and related nets for the design and synthesis of metal-organic frameworks. Chem. Rev. 2020, 120, 8039–8065.

[4]

Deng, G. C.; Teo, B. K.; Zheng, N. F. Assembly of chiral cluster-based metal-organic frameworks and the chirality memory effect during their disassembly. J. Am. Chem. Soc. 2021, 143, 10214–10220.

[5]

Guo, B. B.; Liu, H. Y.; Pang, J.; Lyu, Q.; Wang, Y. T.; Fan, W. D.; Lu, X. Q.; Sun, D. F. Tunable rare-earth metal-organic frameworks for ultra-high selenite capture. J. Hazard. Mater. 2022, 436, 129094.

[6]

Huang, Z. W.; Hu, K. Q.; Mei, L.; Wang, D. G.; Wang, J. Y.; Wu, W. S.; Chai, Z. F.; Shi, W. Q. Encapsulation of polymetallic oxygen clusters in a mesoporous/microporous thorium-based porphyrin metal-organic framework for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2022, 61, 3368–3373.

[7]

Liang, B.; Zhang, X.; Xie, Y.; Lin, R. B.; Krishna, R.; Cui, H.; Li, Z. Q.; Shi, Y. S.; Wu, H.; Zhou, W. et al. An ultramicroporous metal-organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 2020, 142, 17795–17801.

[8]
Wang, H. T. ; Chen, Q. ; Zhang, X. ; Zhao, Y. L. ; Xu, M. M. ; Lin, R. B. ; Huang, H. L. ; Xie, L. H. ; Li, J. R. Two isostructural metal-organic frameworks with unique nickel clusters for C2H2/C2H6/C2H4 mixture separation. J. Mater. Chem. A, in press, DOI: 10.1039/D2TA01466A.
DOI
[9]

Won, S.; Jeong, S.; Kim, D.; Seong, J.; Lim, J.; Moon, D.; Baek, S. B.; Lah, M. S. Transformation of a cluster-based metal-organic framework to a rod metal-organic framework. Chem. Mater. 2022, 34, 273–278.

[10]

Yang, D.; Babucci, M.; Casey, W. H.; Gates, B. C. The surface chemistry of metal oxide clusters: From metal-organic frameworks to minerals. ACS Cent. Sci. 2020, 6, 1523–1533.

[11]

Lin, Y. D.; Zhu, Z. K.; Ge, R.; Yu, H.; Li, Z.; Sun, C.; Sun, Y. Q.; Li, X. X.; Zheng, S. T. Proton conductive polyoxoniobate frameworks constructed from nanoscale {Nb68O200} cages. Chem. Commun. 2021, 57, 4702–4705.

[12]

Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

[13]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[14]

Liu, E. E.; Gang, C.; Zeller, M.; Fabini, D. H.; Oertel, C. M. Ligand-induced variations in symmetry and structural dimensionality of lead oxide carboxylates. Cryst. Growth Des. 2017, 17, 1574–1582.

[15]

Martinez-Casado, F. J.; Ramos-Riesco, M.; Rodríguez-Cheda, J. A.; Cucinotta, F.; Matesanz, E.; Miletto, I.; Gianotti, E.; Marchese, L.; Matěj, Z. Unraveling the decomposition process of lead(II) acetate: Anhydrous polymorphs, hydrates, and byproducts and room temperature phosphorescence. Inorg. Chem. 2016, 55, 8576–8586.

[16]

Nockemann, P.; Thijs, B.; van Hecke, K.; van Meervelt, L.; Binnemans, K. Polynuclear metal complexes obtained from the task-specific ionic liquid betainium bistriflimide. Cryst. Growth Des. 2008, 8, 1353–1363.

[17]

Someşan, A. A.; Le Coz, E.; Roisnel, T.; Silvestru, C.; Sarazin, Y. Stable lead(II) boroxides. Chem. Commun. 2018, 54, 5299–5302.

[18]

Teff, D. J.; Huffman, J. C.; Caulton, K. G. Oxide formation upon thermolysis of a Pb(II)/Zr(IV) Alkoxide. J. Am. Chem. Soc. 1996, 118, 4030–4035.

[19]

Wei, Z.; Yang, J. H.; Vreshch, V. D.; Zabula, A. V.; Filatov, A. S.; Dikarev, E. V. Homoleptic tetranuclear complexes of divalent tin and lead tetraolates. Inorg. Chem. 2011, 50, 7295–7300.

[20]

Zhou, J. J.; Wu, H. P.; Yu, H. W.; Hu, Z. G.; Wu, Y. C. Pb10O4(BO3)3I3: A new noncentrosymmetric oxyborate iodide synthesized by the straightforward hydrothermal method. Dalton Trans. 2019, 48, 14996–15001.

[21]

Zhou, J.; Xiao, H.; Zou, H. H.; Liu, X. A new type of three-dimensional hybrid polymeric haloplumbate based on rare high-nuclear heterometallic clusters. Inorg. Chem. 2018, 57, 12860–12868.

[22]

Zhao, Y. H.; Xu, H. B.; Shao, K. Z.; Xing, Y.; Su, Z. M.; Ma, J. F. Syntheses, characterization, and luminescent properties of three 3D lead-organic frameworks with 1D channels. Cryst. Growth Des. 2007, 7, 513–520.

[23]

He, Y. P.; Yuan, L. B.; Chen, G. H.; Lin, Q. P.; Wang, F.; Zhang, L.; Zhang, J. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J. Am. Chem. Soc. 2017, 139, 16845–16851.

[24]

Chen, G. H.; He, Y. P.; Wang, Z. R.; Li, Q. H.; Ma, Z. Z.; Zhang, J. Tunable third-order nonlinear optical effect via modifying Ti4(embonate)6 cage-based ionic pairs. Inorg. Chem. Front. 2022, 9, 1984–1991.

[25]

Chen, G. H.; Li, H. Z.; He, Y. P.; Zhang, S. H.; Yi, X. F.; Liang, F. P.; Zhang, L.; Zhang, J. Ti4(embonate)6 based cage-cluster construction in a stable metal-organic framework for gas sorption and separation. Cryst. Growth Des. 2020, 20, 29–32.

[26]

Chen, R. Y.; Chen, G. H.; He, Y. P.; Xu, H.; Zhang, J. Synthesis and third-order nonlinear optical properties of metal-organic zeolites built from Ti4(embonate)6 tetrahedra. Cryst. Growth Des. 2022, 22, 66–73.

[27]

He, Y. P.; Chen, G. H.; Yuan, L. B.; Zhang, L.; Zhang, J. Ti4(embonate)6 cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties. Inorg. Chem. 2020, 59, 964–967.

[28]

He, Y. P.; Yuan, L. B.; Chen, G. H.; Zhang, L.; Zhang, J. Coordination assembly of the water-soluble Ti4(embonate)6 cages with Mn2+ ions. Isr. J. Chem. 2019, 59, 233–236.

[29]

Chen, R. Y.; Chen, G. H.; He, Y. P.; Zhang, J. Coordination assembly of tetrahedral Ti4(embonate)6 cages with alkaline-earth metal ions. Chin. J. Struct. Chem. 2022, 41, 1–6.

[30]

Kan, L.; Li, G. H.; Liu, Y. L. Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 cluster-based metal-organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 18642–18649.

[31]

Lorzing, G. R.; Gosselin, A. J.; Trump, B. A.; York, A.; H. P.; Sturluson, A.; Rowland, C. A.; Yap, G. P. A.; Brown, C. M. et al. Understanding gas storage in cuboctahedral porous coordination cages. J. Am. Chem. Soc. 2019, 141, 12128–12138.

[32]

Zhao, M. H.; Huang, S.; Fu, Q.; Li, W. F.; Guo, R.; Yao, Q. X.; Wang, F. L.; Cui, P.; Tung, C. H.; Sun, D. Ambient chemical fixation of CO2 using a robust Ag27 cluster-based two-dimensional metal-organic framework. Angew. Chem., Int. Ed. 2020, 59, 20031–20036.

[33]

Song, T. Q.; Yuan, K.; Qiao, W. Z.; Shi, Y.; Dong, J.; Gao, H. L.; Yang, X. P.; Cui, J. Z.; Zhao, B. Water stable [Tb4] cluster-based metal-organic framework as sensitive and recyclable luminescence sensor of Quercetin. Anal. Chem. 2019, 91, 2595–2599.

[34]

Chen, G. H.; Li, D. J.; He, Y. P.; Zhang, S. H.; Liang, F. P.; Zhang, J. Self-assembly of a Ti4(embonate)6 cage toward silver. Inorg. Chem. 2020, 59, 14861–14865.

[35]

He, Y. P.; Chen, G. H.; Li, D. J.; Li, Q. H.; Zhang, L.; Zhang, J. Combining a titanium-organic cage and a hydrogen-bonded organic cage for highly effective third-order nonlinear optics. Angew. Chem., Int. Ed. 2021, 60, 2920–2923.

File
0002_ESM.pdf (581 KB)
0002_ESM_PTC-290.cif (914.8 KB)
0002_ESM_checkcif-PTC-290.pdf (301.8 KB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 21 June 2022
Revised: 09 July 2022
Accepted: 29 July 2022
Published: 19 August 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return