Journal Home > Volume 8 , Issue 2

Lignin is the most abundant aromatic compound found in nature. The rich functional groups of lignin are responsible for its antibacterial, antioxidant, anti-ultraviolet, and biocompatible properties. As modified lignin has a higher molecular weight, water solubility, and better surface activity, it is a good candidate for the construction of new biological materials. Lignin-based hydrogels are a type of functional materials with broad application prospects in the biomedical field. This review aimed to introduce the biological properties of lignin and the application of lignin-based hydrogels in the biological field.


menu
Abstract
Full text
Outline
About this article

Lignin-based Hydrogels for Biological Application

Show Author's information Zilu LyuYong ZhengHao ZhouLin Dai( )
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China

Abstract

Lignin is the most abundant aromatic compound found in nature. The rich functional groups of lignin are responsible for its antibacterial, antioxidant, anti-ultraviolet, and biocompatible properties. As modified lignin has a higher molecular weight, water solubility, and better surface activity, it is a good candidate for the construction of new biological materials. Lignin-based hydrogels are a type of functional materials with broad application prospects in the biomedical field. This review aimed to introduce the biological properties of lignin and the application of lignin-based hydrogels in the biological field.

Keywords: hydrogel, application, biomedical, lignin, modification

References(88)

[1]

ABDELAZIZ O Y, BRINK D P, PROTHMANN J, RAVI K, SUN M, GARCÍA-HIDALGO J, SANDAHL M, HULTEBERG C, TURNER C, LIDÉN G, et al. Biological Valorization of Low Molecular Weight Lignin. Biotechnol Adv, 2016, 34(8), 1318-1346.

[2]

LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 2014, 39(7), 1266-1290.

[3]

DOHERTY W O S, MOUSAVIOUN P, FELLOWS C M. Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products, 2011, 33(2), 259-276.

[4]

GONÇALVES A R, BENAR P. Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Bioresource Technology, 2001, 79(2), 103-111.

[5]

LIU R, DAI L, XU C, WANG K, ZHENG C, SI C. Lignin-Based Micro- and Nanomaterials and Their Composites in Biomedical Applications. ChemSusChem, 2020, 13(17), 4266-4283.

[6]

ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels. Science, 2017, DOI: 10.1126/science.aaf3627.

[7]

PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, LANGER R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 2006, 18(11), 1345-1360.

[8]

YUE K, TRUJILLO-DE SANTIAGO G, ALVAREZ M M, TAMAYOL A, ANNABI N, KHADEMHOSSEINI A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73, 254-271.

[9]

SLAUGHTER B V, KHURSHID S S, FISHER O Z, KHADEMHOSSEINI A, PEPPAS N. Hydrogels in regenerative medicine. Adv Mater, 2009, 21(32-33), 3307-3329.

[10]

XUE B, TANG D, WU X, XU Z, GU J, HAN Y, ZHU Z, QIN M, ZOU X, WANG W, et al. Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proceedings of the National Academy of Sciences, 2021, DOI: 10.1073/pnas.2110961118.

[11]

VAN VLIERBERGHE S, DUBRUEL P, SCHACHT E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5), 1387-1408.

[12]

GUIMARAES C F, AHMED R, MARQUES A P, REIS L L, DEMIRIC U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. Adv Mater, 2021, DOI: 10.1002/adma.202006582.

[13]

WANG Y. Programmable hydrogels. Biomaterials, 2018, 178, 663-680.

[14]

KAMATA H, LI X, CHUNG U I, SAKAI T. Design of Hydrogels for Biomedical Applications. Adv Healthc Mater, 2015, 4(16), 2360-2374.

[15]

SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications. Science, 2012, 336(6085), 1124-1128.

[16]

PINA S, OLIVEIRA J M, REIS R L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater, 2015, 27(7), 1143-1169.

[17]

SHAO Y, FANG Y, LI T, WANG Q, DONG Q, DENG Y, YUAN Y, WEI H, WANG M, GRUVERMAN A, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy & Environmental Science, 2016, 9(5), 1752-1759.

[18]

FERNANDES E M, PIRES R A, MANO J F, REIS R R. Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38(10), 1415-1441.

[19]

MORENO A, SIPPONEN M H. Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons, 2020, 7(9), 2237-2257.

[20]

PAN X, KADLA J F, EHARA K, GILKES N, SADDLER J N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. Agric Food Chem, 2006, 99(16), 5806-5813.

[21]

CHATTERJEE S, SAITO T. Lignin-Derived Advanced Carbon Materials. ChemSusChem, 2015, 8(23), 3941-3958.

[22]

AN L, WANG G, JIA H, LIU C, SUI W, SI C. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int J Biol Macromol, 2017, 99, 674-681.

[23]

LEOPOLDINI M, RUSSO N, TOSCANO M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 2011, 125, 288-306.

[24]

NSIMBA R Y, WEST N, BOATENG A A. Structure and radical scavenging activity relationships of pyrolytic lignins. J Agric Food Chem, 2012, 60(51), 12525-12530.

[25]

DIZHBITE T, PONOMARENKO J, ANDERSONE A, DOBELE G, LAUBERTS M, KRASILINIKOVA J, ULMANE N M, TELYSHEVA G. Role of paramagnetic polyconjugated clusters in lignin antioxidant activity (in vitro). IOP Conference Series: Materials Science and Engineering, 2012, DOI: 10.1088/1757-899X/38/1/012033.

[26]

ESPINOZA-ACOSTA J L, TORRES-CHÁVEZ P I, OLMEDO-MARTÍNEZ J L, VEGA-ROIS A, OLMEDO-FLORES-GAKKARDO S, ZARAGOZA-CONTRERAS E. Lignin in storage and renewable energy applications: A review. Journal of Energy Chemistry, 2018, DOI: 10.1016/J.JECHEM.2018.02.015.

[27]

KAI D, TAN M J, CHEE P L, CHUA W K, YAO Y L, LOH X J. Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18(5), 1175-1200.

[28]

JASTRZEBSKI R, CONSTANT S, LANCEFIELD C S, WESTWOOD N J, WEKHUYSEN B M. Tandem Catalytic Depolymerization of Lignin by Water-tolerant Lewis Acids and Rhodium Complexes. ChemSusChem, 2016, 9, 2074-2079.

[29]

YANG W, FORTUNATI E, BERTOGLIO F, OWCZAREK J S, BRUNI G, KOZANECKI M, KENNY J M, TORRE L, VISAI L, PUGLIA D. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym, 2018, 181, 275-284.

[30]

UGARTONDO V, MITJANS M, VINARDELL M P. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresource Technology, 2008, 99(14), 6683-6687.

[31]

ATHINARAYANAN J, PERIASAMY V S, ALSHATWI A A. Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Materials Science & Engineering C, Materials for Biological Applications, 2020, DOI: 10.1016/j.msec.2020.111313.

[32]

YANAMALA N, KISIN E R, MENAS A L, FARCAS M T, KHALIULLIN T O, VOGEK U B, SHURIN G V, SCHWEGLER-BERRY D, FOURNIER P M, STAR A, et al. In Vitro Toxicity Evaluation of Lignin-‍(un)coated Cellulose Based Nanomaterials on Human A549 and THP-1 Cells. Biomacromolecules, 2016, 17(11), 3464-3473.

[33]

PHINICHKA N, KAENTHONG S. Regenerated cellulose from high α-cellulose pulp of steam-exploded sugarcane bagasse. Journal of Materials Research and Technology, 2018, 7(1), 55-65.

[34]

KO E, PARK K S, KIM S, KIM T, KIM H. Morphological study of cellulosic hydrogel nanofiber for biomedical application. Cellulose, 2019, 26(17), 9107-9118.

[35]

QIAN Y, QIU X, ZHU S. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chemistry, 2015, 17(1), 320-324.

[36]

LU Z, XU W, ZHU W, YANG Q, LEI X, LIU J, LI Y, SUN X, DUAN X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 2014, 50(49), 6479-6482.

[37]

GE Y, LI Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chemistry & Engineering, 2018, 6, 7181-7192.

[38]

YANG W, XU F, MA X, DUO J, LI C, SHEN S, PUGLIA D, CHEN J, XU P, KENNY J, et al. Highly-toughened PVA/nanocellulose hydrogels with anti-oxidative and antibacterial properties triggered by lignin-Ag nanoparticles. Materials Science and Engineering: C, 2021, DOI: 10.1016/j.msec.2021.112385.

[39]

HAMAGUCHI M, CARDOSO M, VAKKILAINEN E. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects. Energies, 2012, 5(7), 2288-2309.

[40]

SWAIN P K, DAS L M, NAIK S N. Biomass to liquid: A prospective challenge to research and development in 21st century. Renewable and Sustainable Energy Reviews, 2011, 15(9), 4917-4933.

[41]

MCCARTHY J L, ISLAM A. Lignin Chemistry, Technology, and Utilization: A Brief History. ACS Symposium Series, 1999, 742, 2-99.

[42]

CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004, 20(2), 131-141.

[43]

YU J, WANG D, SUN L. The pyrolysis of lignin: Pathway and interaction studies. Fuel, 2021, DOI: 10.1016/j.fuel.2020.120078.

[44]

LIU C, WU S, ZHANG H, XIAO R. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology, 2019, 191, 181-201.

[45]

TRUTER P, PIZZI A, VERMAAS H. Cold-setting wood adhesives from kraft hardwood lignin. Journal of Applied Polymer Science, 1994, 51(7), 1319-1322.

[46]

MU Y B, WANG C P, ZHAO L W, CHU F X. Study on composite adhesive of hydroxymethylated lignosulfonate/phenol-formaldehyde resin with low free formaldehyde. Chemistry and Industry of Forest Products, 2009, 29, 38-42.

[47]

MATSUSHITA Y, YASUDA S. Reactivity of a condensed-type lignin model compound in the Mannich reaction and preparation of cationic surfactant from sulfuric acid lignin. Journal of Wood Science, 2003, 49(2), 166-171.

[48]

SADEGHIFAR H, CUI C, ARGYROPOULOS D S. Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 2012, 51(51), 16713-16720.

[49]

ZHANG L, HUANG J. Effects of nitrolignin on mechanical properties of polyurethane-nitrolignin films. Journal of Applied Polymer Science, 2001, 80, 1213-1219.

[50]

BRUNOW G. Methods to Reveal the Structure of Lignin. Biopolymers, 2001, DOI: 10.1002/3527600035.BPOL1003.

[51]

EFFENDI A, GERHAUSER H, BRIDGWATER A V. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 2008, 12(8), 2092-116.

[52]

WU L C-F, GLASSER W G. Engineering plastics from lignin. Ⅰ: Synthesis of hydroxypropyl lignin. Journal of Applied Polymer Science, 1984, 29, 1111-1123.

[53]

Ionescu M. Chemistry and Technology of Polyols for Polyurethanes. UK: Rapra Technology, 2005.

[54]

XUE B-L, WEN J-L, SUN R. Ethanol organosolv lignin as a reactive filler for acrylamide-based hydrogels. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.42638.

[55]

RASCHIP I E, HITRUC G E, VASILE C, POPESCU M. Effect of the lignin type on the morphology and thermal properties of the xanthan/lignin hydrogels. International Journal of Biological Macromolecules, 2013, 54, 230-237.

[56]

XU J, XU J J, LIN Q, JIANG L, ZHANG D, LI Z, MA B, ZHANG C, LI L, KAI D, et al. Lignin-Incorporated Nanogel Serving as an Antioxidant Biomaterial for Wound Healing. ACS Applied Bio Materials, 2020, 4(1), 3-13.

[57]

LI Z, ZHOU F, LI Z, LIN S, CHEN L, LIU L, CHEN Y. Hydrogel Cross-Linked with Dynamic Covalent Bonding and Micellization for Promoting Burn Wound Healing. ACS Applied Materials & Interfaces, 2018, 10(30), 25194-25202.

[58]

ZARRINTAJ P, JOUYANDEH M, GANJALI M R, HADAVAND M M, MOZAFARI M, SHEIKO S S, VARNOOSFADERANI M V, GUTIERREZ T J, SAEB M R. Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.

[59]

MENG Y, LU J, CHENG Y, LI Q, WANG H. Lignin-based hydrogels: A review of preparation, properties, and application. Int J Biol Macromol, 2019, 135, 1006-1019.

[60]

YOU X, WANG X, ZHANG H J, CUI K, ZHAGN A, WANG L, YADAV C, LI X. Supertough Lignin Hydrogels with Multienergy Dissipative Structures and Ultrahigh Antioxidative Activities. ACS Appl Mater Interfaces, 2020, 12(35), 39892-39901.

[61]

RAVISHANKAR K, VENKATESAN M, DESINGH R P, MAHALINGAM A, SADHASIVAM B, SUBRAMANIYAM R, DHAMODHARAN R. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater Sci Eng C Mater Biol Appl, 2019, 102, 447-457.

[62]

ZHONG R, TANG Q, WANG S, ZHANG H, ZHANG F, XIAO M, MAN T, QU X, LI L, ZHANG W, et al. Self-Assembly of Enzyme-Like Nanofibrous G-Molecular Hydrogel for Printed Flexible Electrochemical Sensors. Adv Mater, 2018, DOI: 10.1002/adma.201706887.

[63]

CAI G, WANG J, QIAN K, CHEN J, LI S, LEE P S. Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection. Adv Sci, 2017, DOI: 10.1002/advs.201600190.

[64]

NYEIN H Y Y, GAO W, SHAHPAR Z, EMAMINEJAD S, CHALLA S, CHEN K, FAHAD H M, TAI L, OTA H, DAVIS R W, et al. A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano, 2016, DOI: 10.1021/acsnano.6b04005.

[65]

FENG S, LI Q, WANG S, WANG B, HOU Y, ZHANG T. Tunable Dual Temperature-Pressure Sensing and Parameter Self-Separating Based on Ionic Hydrogel via Multisynergistic Network Design. ACS Applied Materials & Interfaces, 2019, 11(23), 21049-21057.

[66]

SAMAI S, SAPSANIS C, PATIL S P, EZZEDDINE A, MOOSA B A, OMRAM H, EMWAS A H, SALAMA K N, KHASHAB N M. A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors. Soft Matter, 2016, 12(11), 2842-2845.

[67]

SHAIBANI P M, ETAYASH H, NAICKER S, KAUR K, THUNDAT T. Metabolic Study of Cancer Cells Using a pH Sensitive Hydrogel Nanofiber Light Addressable Potentiometric Sensor. ACS Sens, 2017, 2(1), 151-156.

[68]

HAN X, ZHANG Y, RAN F, LI C Y, DAI L, LI H, YU F, ZHENG C, SI C. Lignin nanoparticles for hydrogel-based pressure sensor. Industrial Crops and Products, 2022, DOI: 10.1016/j.indcrop.2021.114366.

[69]

HAN X, LV Z, RAN F, DAI L, LI C, SI C. Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. Int J Biol Macromol, 2021, 176, 78-86.

[70]

MONDAL A K, XU D, WU S, ZOU Q, HUANG F, NI Y. Design of Fe3+-Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules, 2022, 23(3), 766-778.

[71]

MIAO Y, TANG Z, ZHANG Q, REHEMAN A, XIAO H, ZHANG M, LIU K, HUANG L, CHEN L, WU H. Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, UV Shielding, and Antioxidant Activity as Wearable Sensors. ACS Applied Polymer Materials, 2022, 4(2), 1448-1156.

[72]

PASSAUER L, STRUCH M, SCHULDT S, APPELT J, SCHENEIDER Y, JAROS D, ROHM H. Dynamic moisture sorption characteristics of xerogels from water-swellable oligo(oxyethylene) lignin derivatives. ACS Appl Mater Interfaces, 2012, 4(11), 5852-5862.

[73]

PASSAUER L, FISCHER K, LIEBNER F. Preparation and physical characterisation of strongly swellable oligo(oxyethylene) lignin hydrogels. Holzforschung, 2011, 65, 309-317.

[74]

CHOI D, HEO J, PARK J H, JO Y, JEONG H, CHANG M, CHOI J, HONG J. Nano-film coatings onto collagen hydrogels with desired drug release. Journal of Industrial and Engineering Chemistry, 2016, 36, 326-333.

[75]

PARK S, KIM S H, KIM J H, YU H, KIM H J, YANG Y, KIM H, KIM Y H, HA S H, LEE S H. Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 33-39.

[76]

PARK S, KIM S H, WON K, CHOI I W, KIM Y H, KIM H J, YANG Y, LEE S H. Wood mimetic hydrogel beads for enzyme immobilization. Carbohydrate Polymers, 2015, 115, 223-229.

[77]

ZMEJKOSKI D, SPASOJEVIĆ D, ORLOVSKA I, ORLOVSKA I, KOZYROVAKA N, SOKOVIC M, GLAMOCLIJA J, DMITROBIC S, MATOVIC B, TASIC N. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int J Biol Macromol, 2018, 118(Pt A), 494-503.

[78]

ZHAO H K, FENG Q, XIE Y, LI J, CHEN X. Preparation of Biocompatible Hydrogel from Lignin-Carbohydrate Complex (LCC) as Cell Carriers. Bioresources, 2017, 12, 8490-8504.

[79]

PARK H, JEONG Y R, YUN J, HONG S Y, JIN S, LEE S, ZI G, HA J S. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano, 2015, DOI: 10.1021/acsnano.5b03510.

[80]

DAI L, MA M, XU J, SI C, WANG X, LIU Z, NI Y. All-Lignin-Based Hydrogel with Fast pH-Stimuli Responsiveness for Mechanical Switching and Actuation. Chemistry of Materials, 2020, 32(10), 4324-4330.

[81]

KAI D, LOW Z W, LIOW S S, KARIM A A, YE H, JIN G, LI K, LOH X J. Development of Lignin Supramolecular Hydrogels with Mechanically Responsive and Self-Healing Properties. ACS Sustainable Chemistry & Engineering, 2015, 3(9), 2160-2169.

[82]

KIM D, KIM Y, CHOI K, GRUNLAN J C, YU C. Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3, 4-Ethylenedioxythiophene) Poly(Styrenesulfonate). ACS Nano, 2010, DOI: 10.1021/nn9013577.

[83]

KIM Y S, KADLA J F. Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization. Biomacromolecules, 2010, 11(4), 981-988.

[84]

JIN C, SONG W, LIU T, XIN J. Temperature and pH Responsive Hydrogels Using Methacrylated Lignosulfonate Cross-Linker: Synthesis, Characterization, and Properties. ACS Sustainable Chemistry & Engineering, 2018, DOI: 10.1021/acssuschemeng.7b03158.

[85]

GAN D, XING W, JIANG L, FANG J, ZHAO C, REN F, FANG L, WANG K, LU X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun, 2019, DOI: 10.1038/s41467-019-09351-2.

[86]

MURAKAMI Y, MAEDA M. DNA-Responsive Hydrogels That Can Shrink or Swell. Biomacromolecules, 2005, 6(6), 2927-2929.

[87]

FIGUEIREDO P, FERRO C, KEMELL M, LIU Z, KIRIAZIS A, LINTINEN K, FLORINDO H F, YLI-KAUHALUOMA J, HIRVONEN J, KOSTIAINEN M A, et al. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond), 2017, 12(21), 2581-2596.

[88]

LU J, ZHU W, DAI L, SI C, NI Y. Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydrate Polymers, 2019, 215, 289-295.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 January 2023
Accepted: 20 February 2023
Published: 25 April 2023
Issue date: April 2023

Copyright

© 2023 Paper and Biomaterials Editorial Board

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (32171717), and the Young Elite Scientists Sponsorship Program (YESS20200389).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return