Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hematopoietic stem cells (HSCs) are the cornerstone of the blood and immune systems, and their aging plays a crucial role in the decline of both. The aging of HSCs induces systemic inflammation, which significantly contributes to the onset of age-related diseases. Understanding how to slow down the aging of tissues and organs, particularly the hematopoietic system, and how to prevent and treat aging-associated diseases, has become an urgent scientific challenge. HSC aging, coupled with clonal hematopoiesis, is a key driver of blood system aging and multi-organ age-related diseases. This review explores the relationship between HSC aging, blood diseases, and the progression of systemic diseases. We discuss potential therapeutic strategies to intervene in HSC aging, aiming to mitigate the effects of aging on the blood system and multiple organs and aging related diseases.
Dykstra, B.; Olthof, S.; Schreuder, J.; et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 2011, 208, 2691–2703.
Rossi, D. J.; Bryder, D.; Zahn, J. M.; et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9194–9199.
Florian, M. C.; Dörr, K.; Niebel, A.; et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012, 10, 520–530.
Beerman, I.; Bhattacharya, D.; Zandi, S. S.; et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl. Acad. Sci. USA 2010, 107, 5465–5470.
Cho, R. H.; Sieburg, H. B.; Muller-Sieburg, C. E. A new mechanism for the aging of hematopoietic stem cells: Aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 2008, 111, 5553–5561.
Köhler, A.; Schmithorst, V.; Filippi, M. D.; et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009, 114, 290–298.
Xing, Z. L.; Ryan, M. A.; Daria, D.; et al. Increased hematopoietic stem cell mobilization in aged mice. Blood 2006, 108, 2190–2197.
Geiger, H.; Koehler, A.; Gunzer, M. Stem cells, aging, niche, adhesion and Cdc42: A model for changes in cell-cell interactions and hematopoietic stem cell aging. Cell Cycle 2007, 6, 884–887.
Liang, Y.; Van Zant, G.; Szilvassy, S. J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 2005, 106, 1479–1487.
Flach, J.; Bakker, S. T.; Mohrin, M.; et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 2014, 512, 198–202.
Norddahl, G. L.; Pronk, C. J.; Wahlestedt, M.; et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011, 8, 499–510.
Ito, K.; Hirao, A.; Arai, F.; et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 2006, 12, 446–451.
Sun, D. Q.; Luo, M.; Jeong, M.; et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014, 14, 673–688.
Beerman, I.; Bock, C.; Garrison, B. S.; et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013, 12, 413–425.
Li, J. J.; Liu, J. K.; Li, Y. E.; et al. Differentiation route determines the functional outputs of adult megakaryopoiesis. Immunity 2024, 57, 478–494.e6.
Poscablo, D. M.; Worthington, A. K.; Smith-Berdan, S.; et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell 2024, 187, 3090–3107.e21.
Alter, B. P.; Rosenberg, P. S.; Giri, N.; et al. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica 2012, 97, 353–359.
Rossi, D. J.; Bryder, D.; Seita, J.; et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007, 447, 725–729.
Steensma, D. P.; Bejar, R.; Jaiswal, S.; et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015, 126, 9–16.
Mohrin, M.; Shin, J.; Liu, Y. F.; et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 2015, 347, 1374–1377.
Majewski, I. J.; Ritchie, M. E.; Phipson, B.; et al. Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 2010, 116, 731–739.
Kamminga, L. M.; Bystrykh, L. V.; de Boer, A.; et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 2006, 107, 2170–2179.
Iwama, A.; Oguro, H.; Negishi, M.; et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 2004, 21, 843–851.
Lessard, J.; Schumacher, A.; Thorsteinsdottir, U.; et al. Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev. 1999, 13, 2691–2703.
Chambers, S. M.; Shaw, C. A.; Gatza, C.; et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 2007, 5, e201.
Celso, C. L.; Scadden, D. T. The haematopoietic stem cell niche at a glance. J. Cell Sci. 2011, 124, 3529–3535.
Mitchell, C. A.; Verovskaya, E. V.; Calero-Nieto, F. J.; et al. Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing. Nat. Cell Biol. 2023, 25, 30–41.
Ergen, A. V.; Boles, N. C.; Goodell, M. A. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 2012, 119, 2500–2509.
Wagner, W.; Horn, P.; Bork, S.; et al. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp. Gerontol. 2008, 43, 974–980.
Frisch, B. J.; Hoffman, C. M.; Latchney, S. E.; et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight 2019, 5, e124213.
Ambrosi, T. H.; Marecic, O.; McArdle, A.; et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021, 597, 256–262.
Ho, Y. H.; Del Toro, R.; Rivera-Torres, J.; et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 2019, 25, 407–418.e6.
Franceschi, C.; Garagnani, P.; Morsiani, C.; et al. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med. (Lausanne) 2018, 5, 61.
Bogeska, R.; Mikecin, A. M.; Kaschutnig, P.; et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022, 29, 1273–1284.e8.
Kovtonyuk, L. V.; Caiado, F.; Garcia-Martin, S.; et al. IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood 2022, 139, 44–58.
Higa, K. C.; Goodspeed, A.; Chavez, J. S.; et al. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J. Exp. Med. 2021, 218, e20200560.
Agarwal, P.; Sampson, A.; Hueneman, K.; et al. Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1. Nature 2025, 642, 201–211.
Jaiswal, S.; Fontanillas, P.; Flannick, J.; et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014, 371, 2488–2498.
Genovese, G.; Kähler, A. K.; Handsaker, R. E.; et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 2014, 371, 2477–2487.
Girotra, M.; Chiang, Y. H.; Charmoy, M.; et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat. Aging 2023, 3, 1057–1066.
Jan, M.; Snyder, T. M.; Corces-Zimmerman, M. R.; et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 2012, 4, 149ra118.
Avagyan, S.; Henninger, J. E.; Mannherz, W. P.; et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 2021, 374, 768–772.
Challen, G. A.; Sun, D. Q.; Jeong, M.; et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 2011, 44, 23–31.
Moran-Crusio, K.; Reavie, L.; Shih, A.; et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20, 11–24.
Sasaki, M.; Knobbe, C. B.; Munger, J. C.; et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012, 488, 656–659.
Haferlach, T.; Nagata, Y.; Grossmann, V.; et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014, 28, 241–247.
Raaijmakers, M. H. G. P.; Mukherjee, S.; Guo, S. Q.; et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010, 464, 852–857.
Kim, Y. W.; Koo, B. K.; Jeong, H. W.; et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 2008, 112, 4628–4638.
Zimmer, S. N.; Zhou, Q.; Zhou, T.; et al. Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis. Blood 2011, 118, 69–79.
Medyouf, H.; Mossner, M.; Jann, J. C.; et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014, 14, 824–837.
Hanoun, M.; Zhang, D. C.; Mizoguchi, T.; et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 2014, 15, 365–375.
Muntión, S.; Ramos, T. L.; Diez-Campelo, M.; et al. Microvesicles from mesenchymal stromal cells are involved in HPC-microenvironment crosstalk in myelodysplastic patients. PLoS One 2016, 11, e0146722.
Ben-Batalla, I.; Schultze, A.; Wroblewski, M.; et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 2013, 122, 2443–2452.
Zink, F.; Stacey, S. N.; Norddahl, G. L.; et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017, 130, 742–752.
Jaiswal, S.; Natarajan, P.; Silver, A. J.; et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017, 377, 111–121.
Fuster, J. J.; MacLauchlan, S.; Zuriaga, M. A.; et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017, 355, 842–847.
Wang, W.; Liu, W. L.; Fidler, T.; et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 V617F mice. Circ. Res. 2018, 123, e35–e47.
van Vlijmen, B. J.; Gerritsen, G.; Franken, A. L.; et al. Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice. Circ. Res. 2001, 88, 780–786.
Genetics Consortium Emerging Risk Factors Collaboration, I. L. 6. R.; Sarwar, N.; Butterworth, A. S.; et al. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet 2012, 379, 1205–1213.
Ferreira, R. C.; Freitag, D. F.; Cutler, A. J.; et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 2013, 9, e1003444.
Bick, A. G.; Pirruccello, J. P.; Griffin, G. K.; et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 2020, 141, 124–131.
Hinds, D. A.; Barnholt, K. E.; Mesa, R. A.; et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 2016, 128, 1121–1128.
Wolach, O.; Sellar, R. S.; Martinod, K.; et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 2018, 10, eaan8292.
Dorsheimer, L.; Assmus, B.; Rasper, T.; et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019, 4, 25–33.
Mas-Peiro, S.; Hoffmann, J.; Fichtlscherer, S.; et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 2020, 41, 933–939.
Sano, S.; Oshima, K.; Wang, Y.; et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 2018, 123, 335–341.
Sano, S.; Oshima, K.; Wang, Y.; et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 2018, 71, 875–886.
Coombs, C. C.; Zehir, A.; Devlin, S. M.; et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 2017, 21, 374–382.e4.
Li, S. Q.; Feng, J. X.; Wu, F. Z.; et al. TET2 promotes anti-tumor immunity by governing G-MDSCs and CD8+ T-cell numbers. EMBO Rep. 2020, 21, e49425.
Ptashkin, R. N.; Mandelker, D. L.; Coombs, C. C.; et al. Prevalence of clonal hematopoiesis mutations in tumor-only clinical genomic profiling of solid tumors. JAMA Oncol. 2018, 4, 1589–1593.
Singh, A.; Trinchant, N. M.; Mishra, R.; et al. Immune checkpoint inhibitor therapy and associations with clonal hematopoiesis. Int. J. Mol. Sci. 2024, 25, 11049.
Pan, W.; Zhu, S.; Qu, K.; et al. The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity 2017, 47, 284–297.e5.
Tian, R. Y.; Wiley, B.; Liu, J.; et al. Clonal hematopoiesis and risk of incident lung cancer. J. Clin. Oncol. 2023, 41, 1423–1433.
Zhang, C. R. C.; Nix, D.; Gregory, M.; et al. Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp. Hematol. 2019, 80, 36–41.e3.
Feng, Y.; Yuan, Q. C.; Newsome, R. C.; et al. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. J. Exp. Med. 2023, 220, e20230011.
Kleppe, M.; Comen, E.; Wen, H. Y.; et al. Somatic mutations in leukocytes infiltrating primary breast cancers. NPJ Breast Cancer 2015, 1, 15005.
Cohen Aubart, F.; Roos-Weil, D.; Armand, M.; et al. High frequency of clonal hematopoiesis in Erdheim-Chester disease. Blood 2021, 137, 485–492.
Kang, T. G.; Lan, X.; Mi, T.; et al. Epigenetic regulators of clonal hematopoiesis control CD8 T cell stemness during immunotherapy. Science 2024, 386, eadl4492.
Miller, P. G.; Gibson, C. J.; Mehta, A.; et al. Fitness landscape of clonal hematopoiesis under selective pressure of immune checkpoint blockade. JCO Precis. Oncol. 2020, 4, PO.20.00186.
Bouzid, H.; Belk, J. A.; Jan, M.; et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 2023, 29, 1662–1670.
Hansen, D. V.; Hanson, J. E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472.
Keogh, M. J.; Wei, W.; Aryaman, J.; et al. High prevalence of focal and multi-focal somatic genetic variants in the human brain. Nat. Commun. 2018, 9, 4257.
Wang, H.; Divaris, K.; Pan, B. H.; et al. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 2024, 187, 3690–3711.e19.
Kim, P. G.; Niroula, A.; Shkolnik, V.; et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J. Exp. Med. 2021, 218, e20211872.
Vlasschaert, C.; Robinson-Cohen, C.; Chen, J. C.; et al. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Nat. Med. 2024, 30, 810–817.
Agrawal, M.; Niroula, A.; Cunin, P.; et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 2022, 140, 1094–1103.
Miller, P. G.; Qiao, D. D.; Rojas-Quintero, J.; et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood 2022, 139, 357–368.
Wong, W. J.; Emdin, C.; Bick, A. G.; et al. Clonal haematopoiesis and risk of chronic liver disease. Nature 2023, 616, 747–754.
Bonnefond, A.; Skrobek, B.; Lobbens, S.; et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 2013, 45, 1040–1043.
Wu, D.; Hu, D.; Chen, H.; et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 2018, 559, 637–641.
Ramalingam, P.; Gutkin, M. C.; Poulos, M. G.; et al. Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response. Nat. Commun. 2023, 14, 2018.
Maryanovich, M.; Zahalka, A. H.; Pierce, H.; et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 2018, 24, 782–791.
Satoh, Y.; Yokota, T.; Sudo, T.; et al. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 2013, 38, 1105–1115.
Wahlestedt, M.; Erlandsson, E.; Kristiansen, T.; et al. Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. Nat. Commun. 2017, 8, 14533.
Harrison, D. E.; Strong, R.; Sharp, Z. D.; et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460, 392–395.
Mannick, J. B.; Del Giudice, G.; Lattanzi, M.; et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 2014, 6, 268ra179.
Luo, H. Z.; Mu, W. C.; Karki, R.; et al. Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep. 2019, 26, 945–954.e4.
Brown, K.; Xie, S.; Qiu, X. L.; et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013, 3, 319–327.
Sun, X.; Cao, B.; Naval-Sanchez, M.; et al. Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat. Commun. 2021, 12, 2665.
Ross, J. B.; Myers, L. M.; Noh, J. J.; et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 2024, 628, 162–170.
Cheng, C. W.; Adams, G. B.; Perin, L.; et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 2014, 14, 810–823.
Lentz, M. J.; Killien, M. G. Are you sleeping? Sleep patterns during postpartum hospitalization. J. Perinat. Neonatal Nurs. 1991, 4, 30–38.
Woo, J.; Zhai, T. T.; Yang, F.; et al. Effect of clonal hematopoiesis mutations and canakinumab treatment on incidence of solid tumors in the CANTOS randomized clinical trial. Cancer Prev. Res. (Phila) 2024, 17, 429–436.
Miller, P. G.; Steensma, D. P. Implications of clonal hematopoiesis for precision oncology. JCO Precis. Oncol. 2020, 4, 639–646.
Ling, V. Y.; Lane, S. W. Clearing the way for new therapies in clonal hematopoiesis. Blood Adv 2023, 7, 7151–7152.
Hosseini, M.; Voisin, V.; Chegini, A.; et al. Metformin reduces the competitive advantage of Dnmt3aR878H HSPCs. Nature 2025, 642, 421–430.
Conboy, I. M.; Conboy, M. J.; Wagers, A. J.; et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005, 433, 760–764.
Yamamoto, R.; Wilkinson, A. C.; Ooehara, J.; et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 2018, 22, 600–607.e4.
Geiger, H.; de Haan, G.; Florian, M. C. The ageing haematopoietic stem cell compartment. Nat Rev Immunol 2013, 13, 376–389.
Kaufmann, K. B.; Zeng, A. G. X.; Coyaud, E.; et al. A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nat. Immunol. 2021, 22, 723–734.
Fassoni, A. C.; Glauche, I. Math models expose myeloid bias mechanisms in hematopoiesis. Blood 2025, 145, 1231–1232.
Singh, A.; Chia, J. J.; Rao, D. S.; et al. Population dynamics modeling reveals that myeloid bias involves both HSC differentiation and progenitor proliferation biases. Blood 2025, 145, 1293–1308.
Xiong, H. Q.; Wang, Q. H.; Li, C. C.; et al. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. Sci. Adv. 2024, 10, eadi3664.
Li, C. C.; Zhang, G. Y.; Du, J. J.; et al. Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos. Nat. Commun. 2022, 13, 346.
Mansell, E.; Lin, D. S.; Loughran, S. J.; et al. New insight into the causes, consequences, and correction of hematopoietic stem cell aging. Exp. Hematol. 2023, 125/126, 1–5.
Khan, A. O.; Rodriguez-Romera, A.; Reyat, J. S.; et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 2023, 13, 364–385.
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/