Journal Home > Volume 2 , Issue 1

Nanodiamonds (NDs) are emerging as a promising platform for theranostic particles since they offer a single platform that possesses multiple important properties. These include a simple mechanism of synthesis, small size, chemical inertness, a variety of available surface functional groups, good biocompatibility, stable fluorescence, and a long fluorescence lifetime. The use of NDs to deliver anticancer drugs has been an important ND application since NDs can increase chemosensitivity, sustain drug release, and minimize drug side effects. These unique properties have stimulated the application of NDs to cancer imaging and therapy. In this review, we offer a brief introduction of ND structure and their functional properties. This is followed by a summary of recent uses of NDs for imaging purposes, including fluorescent imaging, magnetic resonance imaging (MRI), and other imaging technologies. Special concern is given to studies focusing on NDs use for anticancer drug delivery, anticancer gene delivery, photothermal and photodynamic therapies, and multifunctional combination therapy. We then discuss ND biocompatibility and toxicity in various cells and animal models. Finally, we also discuss the main problems to be solved by future research before NDs can be put to clinical use. The purpose of this review is to provide a side-by-side comparison of studies reporting ND-mediated cancer imaging therapy so that readers can assess the potential clinical applications of ND and have the background necessary to understand the clinical test results associated with ND-related therapy in animals and humans.


menu
Abstract
Full text
Outline
About this article

Nanodiamond in cancer theranostics

Show Author's information Yang Li1,§Xiaoling Zhu1,2,§Huamiao Zhang1Yuting Lu1Tangye Zeng1Huiping Liu1Ting Li1Jianwei Wang1,2( )Longguang Tang1( )
International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
Department of Colorectal Surgery, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China

§ Yang Li and Xiaoling Zhu contributed equally to this work.

Abstract

Nanodiamonds (NDs) are emerging as a promising platform for theranostic particles since they offer a single platform that possesses multiple important properties. These include a simple mechanism of synthesis, small size, chemical inertness, a variety of available surface functional groups, good biocompatibility, stable fluorescence, and a long fluorescence lifetime. The use of NDs to deliver anticancer drugs has been an important ND application since NDs can increase chemosensitivity, sustain drug release, and minimize drug side effects. These unique properties have stimulated the application of NDs to cancer imaging and therapy. In this review, we offer a brief introduction of ND structure and their functional properties. This is followed by a summary of recent uses of NDs for imaging purposes, including fluorescent imaging, magnetic resonance imaging (MRI), and other imaging technologies. Special concern is given to studies focusing on NDs use for anticancer drug delivery, anticancer gene delivery, photothermal and photodynamic therapies, and multifunctional combination therapy. We then discuss ND biocompatibility and toxicity in various cells and animal models. Finally, we also discuss the main problems to be solved by future research before NDs can be put to clinical use. The purpose of this review is to provide a side-by-side comparison of studies reporting ND-mediated cancer imaging therapy so that readers can assess the potential clinical applications of ND and have the background necessary to understand the clinical test results associated with ND-related therapy in animals and humans.

Keywords: biocompatibility, cancer therapy, nanodiamonds, cancer imaging, clinical translation

References(140)

[1]

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021, 71, 209–249.

[2]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA: Cancer J. Clin. 2022, 72, 7–33.

[3]

Dagogo-Jack, I.; Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94.

[4]

Dewhirst, M. W.; Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 2017, 17, 738–750.

[5]

Kong, J. C.; Li, Y.; Ma, W.; Du, Y. R.; Liu, L.; Qu, T. T.; Liu, S. S.; Wang, M. L.; Dou, W. A novel vector for magnetic resonance imaging-guided chemo-photothermal therapy for cancer. Front. Oncol. 2022, 12, 972082.

[6]

Wang, W. D.; Sun, Z. J. Evoking pyroptosis with nanomaterials for cancer immunotherapy: Current boom and novel outlook. Nano TransMed 2022, 1, e9130001.

[7]

Wang, S. M.; Yang, Y. J.; Li, S. H.; Chen, H. B.; Zhao, Y. S.; Mu, J. Recent advances in macrophage-derived exosomes as delivery vehicles. Nano TransMed 2022, 1, e9130013.

[8]

Xu, X. Y.; Duan, J. L.; Liu, Y.; Kuang, Y.; Duan, J. L.; Liao, T.; Xu, Z. Q.; Jiang, B. B.; Li, C. Multi-stimuli responsive hollow MnO2-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy. Acta Biomater. 2021, 126, 445–462.

[9]

Pandey, A.; Nikam, A. N.; Padya, B. S.; Kulkarni, S.; Fernandes, G.; Shreya, A. B.; García, M. C.; Caro, C.; Páez-Muñoz, J. M.; Dhas, N. et al. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord. Chem. Rev. 2021, 435, 213826.

[10]

Gao, N.; Mei, L. Black phosphorus-based nano-drug delivery systems for cancer treatment: Opportunities and challenges. Asian J. Pharm. Sci. 2021, 16, 1–3.

[11]

Moradi Kashkooli, F.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J. Controlled Release 2020, 327, 316–349.

[12]

Chen, X.; Lei, S.; Lin, J.; Huang, P. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opin. Drug Deliv. 2022, 19, 1487–1504.

[13]

Pakravan, A.; Salehi, R.; Mahkam, M. Comparison study on the effect of gold nanoparticles shape in the forms of star, hallow, cage, rods, and Si–Au and Fe–Au core–shell on photothermal cancer treatment. Photodiagnosis Photodyn. Ther. 2021, 33, 102144.

[14]

D'Acunto, M.; Cioni, P.; Gabellieri, E.; Presciuttini, G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology 2021, 32, 192001.

[15]

Lagos, K. J.; Buzzá, H. H.; Bagnato, V. S.; Romero, M. P. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int. J. Mol. Sci. 2021, 23, 22.

[16]

Burdanova, M. G.; Kharlamova, M. V.; Kramberger, C.; Nikitin, M. P. Applications of pristine and functionalized carbon nanotubes, graphene, and graphene nanoribbons in biomedicine. Nanomaterials 2021, 11, 3020.

[17]

Sattari, S.; Adeli, M.; Beyranvand, S.; Nemati, M. Functionalized graphene platforms for anticancer drug delivery. Int. J. Nanomed. 2021, 16, 5955–5980.

[18]

Dadfar, S. M.; Roemhild, K.; Drude, N. I.; Von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325.

[19]

El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation, and delivery. Nanomedicine 2018, 13, 929–952.

[20]

Kandasamy, G.; Maity, D. Multifunctional theranostic nanoparticles for biomedical cancer treatments—A comprehensive review. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 112199.

[21]

Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S. W.; Xu, G. X.; Qu, J. L.; Coquet, P.; Yong, K. T.; Chen, X. Y. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem. Rev. 2019, 119, 9559–9656.

[22]

Chan, M. H.; Chen, B. G.; Ngo, L. T.; Huang, W. T.; Li, C. H.; Liu, R. S.; Hsiao, M. Natural carbon nanodots: Toxicity assessment and theranostic biological application. Pharmaceutics 2021, 13, 1874.

[23]

Tang, L.; Li, J.; Pan, T.; Yin, Y.; Mei, Y. J.; Xiao, Q. Q.; Wang, R. T.; Yan, Z. W.; Wang, W. Versatile carbon nanoplatforms for cancer treatment and diagnosis: Strategies, applications, and future perspectives. Theranostics 2022, 12, 2290–2321.

[24]

Itoo, A. M.; Vemula, S. L.; Gupta, M. T.; Giram, M. V.; Kumar, S. A.; Ghosh, B.; Biswas, S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Controlled Release 2022, 350, 26–59.

[25]

Lai, H.; Stenzel, M. H.; Xiao, P. Surface engineering and applications of nanodiamonds in cancer treatment and imaging. Int. Mater. Rev. 2020, 65, 189–225.

[26]

Hadizadeh, N.; Zeidi, S.; Khodabakhsh, H.; Zeidi, S.; Rezaei, A.; Liang, Z. B.; Dashtizad, M.; Hashemi, E. An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance. Nanotechnol. Rev. 2022, 11, 1076–1100.

[27]

Hallaji, Z.; Bagheri, Z.; Oroujlo, M.; Nemati, M.; Tavassoli, Z.; Ranjbar, B. An insight into the potentials of carbon dots for in vitro live-cell imaging: Recent progress, challenges, and prospects. Microchim. Acta 2022, 189, 190.

[28]

Witkowska, M.; Florek, E.; Mrówczyński, R. Assessment of pristine carbon nanotubes toxicity in rodent models. Int. J. Mol. Sci. 2022, 23, 15343.

[29]

Shah, P.; Lalan, M.; Jani, D. Toxicological aspects of carbon nanotubes, fullerenes, and graphenes. Curr. Pharm. Design 2021, 27, 556–564.

[30]

Moore, L.; Yang, J. Y.; Lan, T. T. H.; Osawa, E.; Lee, D. K.; Johnson, W. D.; Xi, J. Z.; Chow, E. K. H.; Ho, D. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano 2016, 10, 7385–7400.

[31]

Raja, I. S.; Song, S. J.; Kang, M. S.; Lee, Y. B.; Kim, B.; Hong, S. W.; Jeong, S. J.; Lee, J. C.; Han, D. W. Toxicity of zero- and one-dimensional carbon nanomaterials. Nanomaterials 2019, 9, 1214.

[32]

Whitlow, J.; Pacelli, S.; Paul, A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. J. Controlled Release 2017, 261, 62–86.

[33]

Basu, S.; Pacelli, S.; Wang, J. X.; Paul, A. Adoption of nanodiamonds as biomedical materials for bone repair. Nanomedicine 2017, 12, 2709–2713.

[34]

Pandey, P. C.; Shukla, S.; Pandey, G.; Narayan, R. J. Nanostructured diamond for biomedical applications. Nanotechnology 2021, 32, 132001.

[35]

Jung, H. S.; Neuman, K. C. Surface modification of fluorescent nanodiamonds for biological applications. Nanomaterials 2021, 11, 153.

[36]

Long, W.; Ouyang, H.; Wan, W. M.; Yan, W. F.; Zhou, C. Q.; Huang, H. Y.; Liu, M. Y.; Zhang, X. Y.; Feng, Y. L.; Wei, Y. “Two in one”: Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. Mater. Sci. Eng. C 2020, 108, 110413.

[37]

Liu, C. Y.; Lee, M. C.; Lin, H. F.; Lin, Y. Y.; Lai, W. Y.; Chien, Y.; Huo, T. I.; Lo, W. L.; Lan, Y. T.; Chen, Y. W. et al. Nanodiamond-based microRNA delivery system promotes pluripotent stem cells toward myocardiogenic reprogramming. J. Chin. Med. Assoc. 2021, 84, 177–182.

[38]

Leung, H. M.; Chan, M. S.; Liu, L. S.; Wong, S. W.; Lo, T. W.; Lau, C. H.; Tin, C.; Lo, P. K. Dual-function, cationic, peptide-coated nanodiamond systems: Facilitating nuclear-targeting delivery for enhanced gene therapy applications. ACS Sustainable Chem. Eng. 2018, 6, 9671–9681.

[39]

Lim, D. G.; Rajasekaran, N.; Lee, D.; Kim, N. A.; Jung, H. S.; Hong, S.; Shin, Y. K.; Kang, E.; Jeong, S. H. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces. ACS Appl. Mater. Interfaces 2017, 9, 31543–31556.

[40]

Zhang, X. Y.; Hu, W. B.; Li, J.; Tao, L.; Wei, Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 2012, 1, 62–68.

[41]

Paget, V.; Sergent, J. A.; Grall, R.; Altmeyer-Morel, S.; Girard, H. A.; Petit, T.; Gesset, C.; Mermoux, M.; Bergonzo, P.; Arnault, J. C. et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine, and lung human cell lines. Nanotoxicology 2014, 8, 46–56.

[42]

Ali, M. S.; Metwally, A. A.; Fahmy, R. H.; Osman, R. Nanodiamonds: Minuscule gems that ferry antineoplastic drugs to resistant tumors. Int. J. Pharm. 2019, 558, 165–176.

[43]

Bumb, A.; Sarkar, S. K.; Billington, N.; Brechbiel, M. W.; Neuman, K. C. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J. Am. Chem. Soc. 2013, 135, 7815–7818.

[44]

Du, X. B.; Li, L.; Wei, S. G.; Wang, S. B.; Li, Y. Q. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J. Mater. Chem. B 2020, 8, 1660–1671.

[45]

Tinwala, H.; Wairkar, S. Production, surface modification, and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C 2019, 97, 913–931.

[46]

Alkahtani, M. H.; Alghannam, F.; Jiang, L. K.; Almethen, A.; Rampersaud, A. A.; Brick, R.; Gomes, C. L.; Scully, M. O.; Hemmer, P. R. Fluorescent nanodiamonds: Past, present, and future. Nanophotonics 2018, 7, 1423–1453.

[47]

Iakoubovskii, K.; Mitsuishi, K.; Furuya, K. High-resolution electron microscopy of detonation nanodiamond. Nanotechnology 2008, 19, 155705.

[48]

Ho, D.; Wang, C. H. K.; Chow, E. K. H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 2015, 1, e1500439.

[49]

Kossovsky, N.; Gelman, A.; Hnatyszyn, H. J.; Rajguru, S.; Garrell, R. L.; Torbati, S.; Freitas, S. S. F.; Chow, G. M. Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjugate Chem. 1995, 6, 507–511.

[50]

Al-Jamal, K. T.; Nunes, A.; Methven, L.; Ali-Boucetta, H.; Li, S. P.; Toma, F. M.; Herrero, M. A.; Al-Jamal, W. T.; Ten Eikelder, H. M. M.; Foster, J. et al. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew. Chem., Int. Ed. 2012, 51, 6389–6393.

[51]

Su, L. J.; Wu, M. S.; Hui, Y. Y.; Chang, B. M.; Pan, L.; Hsu, P. C.; Chen, Y. T.; Ho, H. N.; Huang, Y. H.; Ling, T. Y. et al. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci. Rep. 2017, 7, 45607.

[52]

Claveau, S.; Bertrand, J. R.; Treussart, F. Fluorescent nanodiamond applications for cellular process sensing and cell tracking. Micromachines 2018, 9, 247.

[53]

Hemelaar, S. R.; Saspaanithy, B.; L'Hommelet, S. R. M.; Perona Martinez, F. P.; Van Der Laan, K. J.; Schirhagl, R. The response of HeLa cells to fluorescent nanodiamond uptake. Sensors 2018, 18, 355.

[54]

Sotoma, S.; Hsieh, F. J.; Chen, Y. W.; Tsai, P. C.; Chang, H. C. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. Chem. Commun. 2018, 54, 1000–1003.

[55]

Jung, H. S.; Cho, K. J.; Seol, Y.; Takagi, Y.; Dittmore, A.; Roche, P. A.; Neuman, K. C. Polydopamine encapsulation of fluorescent nanodiamonds for biomedical applications. Adv. Funct. Mater. 2018, 28, 1801252.

[56]

Talapatra, S.; Ganesan, P. G.; Kim, T.; Vajtai, R.; Huang, M.; Shima, M.; Ramanath, G.; Srivastava, D.; Deevi, S. C.; Ajayan, P. M. Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 2005, 95, 097201.

[57]

Waddington, D. E. J.; Sarracanie, M.; Zhang, H. L.; Salameh, N.; Glenn, D. R.; Rej, E.; Gaebel, T.; Boele, T.; Walsworth, R. L.; Reilly, D. J. et al. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat. Commun. 2017, 8, 15118.

[58]

Ryu, T. K.; Baek, S. W.; Kang, R. H.; Choi, S. W. Selective photothermal tumor therapy using nanodiamond-based nanoclusters with folic acid. Adv. Funct. Mater. 2016, 26, 6428–6436.

[59]

Mohan, N.; Chen, C. S.; Hsieh, H. H.; Wu, Y. C.; Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692–3699.

[60]

Deng, X. W.; Yin, Z. X.; Lu, J. Q.; Xia, Y.; Shao, L. H.; Hu, Q.; Zhou, Z. X.; Zhang, F.; Zhou, S. M.; Wu, Y. et al. Two-step assembling of near-infrared “OFF–ON” fluorescent nanohybrids for synchronous tumor imaging and microRNA modulation-based therapy. ACS Appl. Mater. Interfaces 2017, 9, 3294–3305.

[61]

Kang, R. H.; Baek, S. W.; Ryu, T. K.; Choi, S. W. Fabrication of blue-fluorescent nanodiamonds modified with alkyl isocyanate for cellular bioimaging. Colloids Surf. B: Biointerfaces 2018, 167, 191–196.

[62]

Wu, Y. Z.; Ermakova, A.; Liu, W. N.; Pramanik, G.; Vu, T. M.; Kurz, A.; McGuinness, L.; Naydenov, B.; Hafner, S.; Reuter, R. et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Adv. Funct. Mater. 2015, 25, 6576–6585.

[63]

Bertrand, J. R.; Pioche-Durieu, C.; Ayala, J.; Petit, T.; Girard, H. A.; Malvy, C. P.; Le Cam, E.; Treussart, F.; Arnault, J. C. Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials 2015, 45, 93–98.

[64]

Wang, Z. Q.; Tian, Z. M.; Dong, Y.; Li, L.; Tian, L.; Li, Y. Q.; Yang, B. S. Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery. Diamond Relat. Mater. 2015, 58, 84–93.

[65]

Li, H. N.; Ma, M.; Zhang, J. N.; Hou, W.; Chen, H. R.; Zeng, D. P.; Wang, Z. B. Ultrasound-enhanced delivery of doxorubicin-loaded nanodiamonds from pullulan-all-trans-retinal nanoparticles for effective cancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 20341–20349.

[66]

Madamsetty, V. S.; Sharma, A.; Toma, M.; Samaniego, S.; Gallud, A.; Wang, E. F.; Pal, K.; Mukhopadhyay, D.; Fadeel, B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomed. Nanotechnol. Biol. Med. 2019, 18, 112–121.

[67]

Kim, H.; Kim, H.; Lee, J.; Lim, W. C.; Eliades, J. A.; Kim, J.; Song, J.; Suk, J. Fabrication of silicon-vacancy color centers in nanodiamonds by using Si-ion implantation. J. Korean Phys. Soc. 2018, 73, 661–666.

[68]

Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.; Cigler, P. Designing the nanobiointerface of fluorescent nanodiamonds: Highly selective targeting of glioma cancer cells. Nanoscale 2015, 7, 415–420.

[69]

Minati, L.; Cheng, C. L.; Lin, Y. C.; Hees, J.; Lewes-Malandrakis, G.; Nebel, C. E.; Benetti, F.; Migliaresi, C.; Speranza, G. Synthesis of novel nanodiamonds-gold core shell nanoparticles. Diamond Relat. Mater. 2015, 53, 23–28.

[70]

Zhang, Y.; Cui, Z. F.; Kong, H. T.; Xia, K.; Pan, L.; Li, J.; Sun, Y. H.; Shi, J. Y.; Wang, L. H.; Zhu, Y. et al. One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Adv. Mater. 2016, 28, 2699–2708.

[71]

Gismondi, A.; Nanni, V.; Reina, G.; Orlanducci, S.; Terranova, M. L.; Canini, A. Nanodiamonds coupled with 5,7-dimethoxycoumarin, a plant bioactive metabolite, interfere with the mitotic process in b16f10 cells altering the actin organization. Int. J. Nanomedicine 2016, 11, 557–574.

[72]

Liu, W. N.; Naydenov, B.; Chakrabortty, S.; Wuensch, B.; Hübner, K.; Ritz, S.; Cölfen, H.; Barth, H.; Koynov, K.; Qi, H. Y. et al. Fluorescent nanodiamond-gold hybrid particles for multimodal optical and electron microscopy cellular imaging. Nano Lett. 2016, 16, 6236–6244.

[73]

Alwani, S.; Kaur, R.; Michel, D.; Chitanda, J. M.; Verrall, R. E.; Karunakaran, C.; Badea, I. Lysine-functionalized nanodiamonds as gene carriers: Development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application. Int. J. Nanomedicine 2016, 11, 687–702.

[74]

Xia, Y.; Deng, X. W.; Cao, M. J.; Liu, S.; Zhang, X. F.; Xiao, X. Q.; Shen, S. S.; Hu, Q.; Sheng, W. Nanodiamond-based layer-by-layer nanohybrids mediate targeted delivery of miR-34a for triple negative breast cancer therapy. RSC Adv. 2018, 8, 13789–13797.

[75]

Lam, A. T. N.; Yoon, J. H.; Ly, N. H.; Joo, S. W. Electrostatically self-assembled quinazoline-based anticancer drugs on negatively-charged nanodiamonds for overcoming the chemoresistances in lung cancer cells. BioChip J. 2018, 12, 163–171.

[76]

Qin, S. R.; Zhao, Q.; Cheng, Z. G.; Zhang, D. X.; Zhang, K. K.; Su, L. X.; Fan, H. J.; Wang, Y. H.; Shan, C. X. Rare earth-functionalized nanodiamonds for dual-modal imaging and drug delivery. Diamond Relat. Mater. 2019, 91, 173–182.

[77]

Terada, D.; Sotoma, S.; Harada, Y.; Igarashi, R.; Shirakawa, M. One-pot synthesis of highly dispersible fluorescent nanodiamonds for bioconjugation. Bioconjugate Chem. 2018, 29, 2786–2792.

[78]

Yu, Y.; Yang, X.; Liu, M.; Nishikawa, M.; Tei, T.; Miyako, E. Multifunctional cancer phototherapy using fluorophore-functionalized nanodiamond supraparticles. ACS Appl. Bio Mater. 2019, 2, 3693–3705.

[79]

Sigaeva, A.; Morita, A.; Hemelaar, S. R.; Schirhagl, R. Nanodiamond uptake in colon cancer cells: The influence of direction and trypsin-EDTA treatment. Nanoscale 2019, 11, 17357–17367.

[80]

Boretti, A.; Rosa, L.; Blackledge, J.; Castelletto, S. Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications. Beilstein J. Nanotechnol. 2019, 10, 2128–2151.

[81]

Panich, A. M.; Salti, M.; Goren, S. D.; Yudina, E. B.; Aleksenskii, A. E.; Vul', A. Y.; Shames, A. I. Gd(Ⅲ)-grafted detonation nanodiamonds for MRI contrast enhancement. J. Phys. Chem. C 2019, 123, 2627–2631.

[82]

Rammohan, N.; Macrenaris, K. W.; Moore, L. K.; Parigi, G.; Mastarone, D. J.; Manus, L. M.; Lilley, L. M.; Preslar, A. T.; Waters, E. A.; Filicko, A. et al. Nanodiamond-gadolinium(Ⅲ) aggregates for tracking cancer growth in vivo at high field. Nano Lett. 2016, 16, 7551–7564.

[83]

Yano, K.; Matsumoto, T.; Okamoto, Y.; Kurokawa, N.; Hasebe, T.; Hotta, A. Fabrication of GD-DOTA-functionalized carboxylated nanodiamonds for selective MR imaging (MRI) of the lymphatic system. Nanotechnology 2021, 32, 235102.

[84]

Yano, K.; Matsumoto, T.; Okamoto, Y.; Bito, K.; Kurokawa, N.; Hasebe, T.; Hotta, A. Gadolinium-complexed carboxylated nanodiamond particles for magnetic resonance imaging of the lymphatic system. ACS Appl. Nano Mater. 2021, 4, 1702–1711.

[85]

Panich, A. M.; Salti, M.; Prager, O.; Swissa, E.; Kulvelis, Y. V.; Yudina, E. B.; Aleksenskii, A. E.; Goren, S. D.; Vul', A. Y.; Shames, A. I. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magn. Reson. Med. 2021, 86, 935–942.

[86]

Hou, W. H.; Toh, T. B.; Abdullah, L. N.; Yvonne, T. W. Z.; Lee, K. J.; Guenther, I.; Chow, E. K. H. Nanodiamond-manganese dual mode MRI contrast agents for enhanced liver tumor detection. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 783–793.

[87]

Panich, A. M.; Shames, A. I.; Aleksenskii, A. E.; Yudina, E. B.; Vul', A. Y. Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent. Diamond Relat. Mater. 2021, 119, 108590.

[88]

Lin, B. R.; Chen, C. S.; Kunuku, S.; Chen, T. Y.; Hsiao, T. Y.; Niu, H.; Lee, C. P. Fe doped magnetic nanodiamonds made by ion implantation as contrast agent for MRI. Sci. Rep. 2018, 8, 7058.

[89]

Lee, D.; Park, E. J.; Lee, S. E.; Jeong, S. H.; Lee, J. Y.; Kang, E. Energy-absorbing and local plasmonic nanodiamond/gold nanocomposites for sustained and enhanced photoacoustic imaging. ACS Sustainable Chem. Eng. 2017, 5, 8284–8293.

[90]

Lin, Y. C.; Perevedentseva, E.; Lin, Z. R.; Chang, C. C.; Chen, H. H.; Yang, S. M.; Lin, M. D.; Karmenyan, A.; Speranza, G.; Minati, L. et al. Multimodal bioimaging using nanodiamond and gold hybrid nanoparticles. Sci. Rep. 2022, 12, 5331.

[91]

Salaam, A. D.; Hwang, P.; Mcintosh, R.; Green, H. N.; Jun, H. W.; Dean, D. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. Beilstein J. Nanotechnol. 2014, 5, 937–945.

[92]

Khalid, A.; Mitropoulos, A. N.; Marelli, B.; Tomljenovic-Hanic, S.; Omenetto, F. G. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release. Biomed. Opt. Express 2015, 7, 132–147.

[93]

Zhao, J. C.; Lai, H. W.; Lu, H. X.; Barner-Kowollik, C.; Stenzel, M. H.; Xiao, P. Fructose-coated nanodiamonds: Promising platforms for treatment of human breast cancer. Biomacromolecules 2016, 17, 2946–2955.

[94]

Landeros-Martínez, L. L.; Chavez-Flores, D.; Orrantia-Borunda, E.; Flores-Holguin, N. Construction of a nanodiamond-tamoxifen complex as a breast cancer drug delivery vehicle. J. Nanomater. 2016, 2016, 2682105.

[95]

Wei, S. G.; Li, L.; Du, X. B.; Li, Y. Q. OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy. J. Mater. Chem. B 2019, 7, 3390–3402.

[96]

Fiekkies, J. T. R.; Fourie, E.; Erasmus, E. Cisplatin-functionalized nanodiamonds: Preparation and characterization, with potential antineoplastic application. Appl. Nanosci. 2021, 11, 2235–2245.

[97]

Moore, L.; Chow, E. K. H.; Osawa, E.; Bishop, J. M.; Ho, D. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 2013, 25, 3532–3541.

[98]

Ye, W. Y.; Han, H. J.; Li, H.; Jin, Q.; Wu, Y. Z.; Chakrabortty, S.; Weil, T.; Ji, J. Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Prog. Nat. Sci. Mater. Int. 2020, 30, 711–717.

[99]

Lim, D. G.; Jung, J. H.; Ko, H. W.; Kang, E.; Jeong, S. H. Paclitaxel-nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl. Mater. Interfaces 2016, 8, 23558–23567.

[100]

Wang, X.; Low, X. C.; Hou, W. X.; Abdullah, L. N.; Toh, T. B.; Mohd Abdul Rashid, M.; Ho, D.; Chow, E. K. H. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 2014, 8, 12151–12166.

[101]

Man, H. B.; Kim, H.; Kim, H. J.; Robinson, E.; Liu, W. K.; Chow, E. K. H.; Ho, D. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine 2014, 10, 359–369.

[102]

Lin, Y. W.; Raj, E. N.; Liao, W. S.; Lin, J.; Liu, K. K.; Chen, T. H.; Cheng, H. C.; Wang, C. C.; Li, L. Y.; Chen, C. et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci. Rep. 2017, 7, 9814.

[103]

Li, D. D.; Chen, X.; Wang, H.; Liu, J.; Zheng, M. L.; Fu, Y.; Yu, Y.; Zhi, J. F. Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging. J. Biophotonics 2017, 10, 1636–1646.

[104]

Liao, W. S.; Ho, Y.; Lin, Y. W.; Naveen Raj, E.; Liu, K. K.; Chen, C.; Zhou, X. Z.; Lu, K. P.; Chao, J. I. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019, 86, 395–405.

[105]

Li, H. N.; Zeng, D. P.; Wang, Z. Y.; Fang, L. Q.; Li, F. Q.; Wang, Z. B. Ultrasound-enhanced delivery of doxorubicin/all-trans retinoic acid-loaded nanodiamonds into tumors. Nanomedicine 2018, 13, 981–996.

[106]

Toh, T. B.; Lee, D. K.; Hou, W. X.; Abdullah, L. N.; Nguyen, J.; Ho, D.; Chow, E. K. H. Nanodiamond-mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol. Pharm. 2014, 11, 2683–2691.

[107]

Xi, G. F.; Robinson, E.; Mania-Farnell, B.; Vanin, E. F.; Shim, K. W.; Takao, T.; Allender, E. V.; Mayanil, C. S.; Soares, M. B.; Ho, D. et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 381–391.

[108]

Huang, H. Y.; Liu, M. Y.; Jiang, R. M.; Chen, J. Y.; Mao, L. C.; Wen, Y. Q.; Tian, J. W.; Zhou, N. G.; Zhang, X. Y.; Wei, Y. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J. Colloid Interface Sci. 2018, 513, 198–204.

[109]

Cui, Z. F.; Zhang, Y.; Xia, K.; Yan, Q. L.; Kong, H. T.; Zhang, J. C.; Zuo, X. L.; Shi, J. Y.; Wang, L. H.; Zhu, Y. et al. Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat. Commun. 2018, 9, 4347.

[110]

Zhao, J. C.; Lu, M. X.; Lai, H. W.; Lu, H. X.; Lalevée, J.; Barner-Kowollik, C.; Stenzel, M. H.; Xiao, P. Delivery of amonafide from fructose-coated nanodiamonds by oxime ligation for the treatment of human breast cancer. Biomacromolecules 2018, 19, 481–489.

[111]

Garg, S.; Garg, A.; Sahu, N. K.; Yadav, A. K. Synthesis and characterization of nanodiamond-anticancer drug conjugates for tumor targeting. Diamond Relat. Mater. 2019, 94, 172–185.

[112]

Gu, M. J.; Toh, T. B.; Hooi, L.; Lim, J. J.; Zhang, X. Y.; Chow, E. K. H. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl. Mater. Interfaces 2019, 11, 45427–45441.

[113]

Ali, M. S.; Metwally, A. A.; Fahmy, R. H.; Osman, R. Chitosan-coated nanodiamonds: Mucoadhesive platform for intravesical delivery of doxorubicin. Carbohydr. Polym. 2020, 245, 116528.

[114]

Yuan, S. J.; Wang, C.; Xu, H. Z.; Liu, Y.; Zheng, M. Y.; Li, K.; Sun, S. K.; Komatsu, N.; Zhao, L.; Chen, X. Conjugation with nanodiamonds via hydrazone bond fundamentally alters intracellular distribution and activity of doxorubicin. Int. J. Pharm. 2021, 606, 120872.

[115]

Patil, S.; Mishra, V. S.; Yadav, N.; Reddy, P. C.; Lochab, B. Dendrimer-functionalized nanodiamonds as safe and efficient drug carriers for cancer therapy: Nucleus penetrating nanoparticles. ACS Appl. Bio Mater. 2022, 5, 3438–3451.

[116]

Bi, Y. Z.; Zhang, Y. F.; Cui, C. Y.; Ren, L. L.; Jiang, X. Y. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7. Int. J. Nanomedicine 2016, 11, 5771–5787.

[117]

Xu, J. R.; Gu, M. J.; Hooi, L.; Toh, T. B.; Thng, D. K. H.; Lim, J. J.; Chow, E. K. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models. Nanoscale 2021, 13, 16131–16145.

[118]

Claveau, S.; Nehlig, É.; Garcia-Argote, S.; Feuillastre, S.; Pieters, G.; Girard, H. A.; Arnault, J. C.; Treussart, F.; Bertrand, J. R. Delivery of siRNA to Ewing sarcoma tumor xenografted on mice, using hydrogenated detonation nanodiamonds: Treatment efficacy and tissue distribution. Nanomaterials 2020, 10, 553.

[119]

Al Qtaish, N.; Gallego, I.; Paredes, A. J.; Villate-Beitia, I.; Soto-Sánchez, C.; Martínez-Navarrete, G.; Sainz-Ramos, M.; Lopez-Mendez, T. B.; Fernández, E.; Puras, G. et al. Nanodiamond integration into niosomes as an emerging and efficient gene therapy nanoplatform for central nervous system diseases. ACS Appl. Mater. Interfaces 2022, 14, 13665–13677.

[120]

Cheng, L. C.; Chen, H. M.; Lai, T. C.; Chan, Y. C.; Liu, R. S.; Sung, J. C.; Hsiao, M.; Chen, C. H.; Her, L. J.; Tsai, D. P. Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 2013, 5, 3931–3940.

[121]

Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A. Boron-doped nanodiamonds as possible agents for local hyperthermia. Laser Phys. Lett. 2017, 14, 045702.

[122]

Ahn, G. Y.; Yun, T. H.; Park, J.; Lee, M. J.; Choi, I.; Ryu, T. K.; Na, K.; Choi, S. W. Polyaniline-grafted nanodiamonds for efficient photothermal tumor therapy. Colloids Surf. B: Biointerf. 2019, 180, 273–280.

[123]

Maziukiewicz, D.; Grześkowiak, B. F.; Coy, E.; Jurga, S.; Mrówczyński, R. NDs@PDA@ICG conjugates for photothermal therapy of glioblastoma multiforme. Biomimetics 2019, 4, 3.

[124]

Wu, Y. K.; Alam, M. N. A.; Balasubramanian, P.; Ermakova, A.; Fischer, S.; Barth, H.; Wagner, M.; Raabe, M.; Jelezko, F.; Weil, T. Nanodiamond theranostic for light-controlled intracellular heating and nanoscale temperature sensing. Nano Lett. 2021, 21, 3780–3788.

[125]

Hou, Z. S.; Wang, Z. Z.; Wang, P. W.; Chen, F.; Luo, X. L. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diamond Relat. Mater. 2022, 123, 108831.

[126]

Lee, H.; Lee, J. S.; Moor, K. J.; Kim, H. I.; Kim, S. R.; Gim, G.; Lee, J.; Kim, H. H.; Fahmy, T. M.; Kim, J. H. et al. Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. J. Colloid Interface Sci. 2021, 587, 101–109.

[127]

Li, J. Y.; Liu, R. Z.; Zhao, Q.; Shi, Y. X.; Gao, G. Y.; Zhi, J. F. Nanodiamond-based photosensitizer: Enhancing photodynamic therapy and inhibiting tumor metastasis. Carbon 2021, 174, 90–97.

[128]

Gvozdev, D. A.; Ramonova, A. A.; Slonimskiy, Y. B.; Gudkova, V. R.; Nikelshparg, E. I.; Moisenovich, A. M.; Moisenovich, M. M.; Zaitsev, A. V.; Olshevskaya, V. A.; Paschenko, V. Z. et al. Nanodiamonds as a platform for targeted delivery of chlorin-based photosensitizers to cancer cells. Diamond Relat. Mater. 2021, 120, 108676.

[129]

Ryu, T. K.; Baek, S. W.; Kang, R. H.; Jeong, K. Y.; Jun, D. R.; Choi, S. W. Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds. J. Controlled Release 2018, 270, 237–245.

[130]

Li, Y.; Kong, J. C.; Zhao, H.; Liu, Y. Synthesis of multi-stimuli responsive Fe3O4 coated with diamonds nanocomposite for magnetic assisted chemo-photothermal therapy. Molecules 2023, 28, 1784.

[131]

Jimenez, C. M.; Knezevic, N. Z.; Rubio, Y. G.; Szunerits, S.; Boukherroub, R.; Teodorescu, F.; Croissant, J. G.; Hocine, O.; Seric, M.; Raehm, L. et al. Nanodiamond-PMO for two-photon PDT and drug delivery. J. Mater. Chem. B 2016, 4, 5803–5808.

[132]

Cui, X. Y.; Liang, Z. Y.; Lu, J. Q.; Wang, X.; Jia, F.; Hu, Q.; Xiao, X. Q.; Deng, X. W.; Wu, Y.; Sheng, W. A multifunctional nanodiamond-based nanoplatform for the enhanced mild-temperature photothermal/chemo combination therapy of triple negative breast cancer via an autophagy regulation strategy. Nanoscale 2021, 13, 13375–13389.

[133]

Cui, X. Y.; Deng, X. W.; Liang, Z. Y.; Lu, J. Q.; Shao, L. H.; Wang, X.; Jia, F.; Pan, Z. A.; Hu, Q.; Xiao, X. Q. et al. Multicomponent-assembled nanodiamond hybrids for targeted and imaging guided triple-negative breast cancer therapy via a ternary collaborative strategy. Biomater. Sci. 2021, 9, 3838–3850.

[134]

Adach, K.; Fijalkowski, M.; Gajek, G.; Skolimowski, J.; Kontek, R.; Blaszczyk, A. Studies on the cytotoxicity of diamond nanoparticles against human cancer cells and lymphocytes. Chem. Biol. Interact. 2016, 254, 156–166.

[135]

Happel, P.; Waag, T.; Schimke, M.; Schweeberg, S.; Muzha, A.; Fortak, K.; Heesch, D.; Klask, L.; Pilscheur, M.; Hoppe, F. et al. Intrinsically 32P-labeled diamond nanoparticles for in vivo imaging and quantification of their biodistribution in chicken embryos. Adv. Funct. Mater. 2018, 28, 1802873.

[136]

Chow, E. K.; Zhang, X. Q.; Chen, M.; Lam, R.; Robinson, E.; Huang, H. J.; Schaffer, D.; Osawa, E.; Goga, A.; Ho, D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011, 3, 73ra21.

[137]

Yuan, Y.; Chen, Y. W.; Liu, J. H.; Wang, H. F.; Liu, Y. F. Biodistribution and fate of nanodiamonds in vivo. Diamond Relat. Mater. 2009, 18, 95–100.

[138]

Qi, W.; Li, Z.; Bi, J. J.; Wang, J.; Wang, J. J.; Sun, T. L.; Guo, Y. A.; Wu, W. S. Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice. Nanoscale Res. Lett. 2012, 7, 473.

[139]

Moore, L.; Grobárová, V.; Shen, H.; Man, H. B.; Míčová, J.; Ledvina, M.; Štursa, J.; Nesladek, M.; Fišerová, A.; Ho, D. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale 2014, 6, 11712–11721.

[140]

Marcon, L.; Riquet, F.; Vicogne, D.; Szunerits, S.; Bodart, J. F.; Boukherroub, R. Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. J. Mater. Chem. 2010, 20, 8064–8069.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 March 2023
Revised: 27 March 2023
Accepted: 31 March 2023
Published: 05 April 2023
Issue date: March 2023

Copyright

© The Author(s) 2023. Nano TransMed published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors would like to acknowledge the support from the National Key R&D Program of China (No. 2021YFA0909900), the National Natural Science Foundation of China (No. 52173142), Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents, and the grants from the Startup Package of Zhejiang University.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return