Journal Home > Volume 2 , Issue 1

As alternatives to autografts, allografts, and xenografts, calcium phosphate (CaP)-based bone-defect-filling materials (e.g., deproteinized bovine bone (DBB, Bio-Oss®)) are widely used to repair large-volume bone defects (LVBDs) in clinic. However, most of these materials show a very low degradability due to a sintering process in their production. In this study, we synthesized a novel type of granules—biomimetically precipitated nanocrystalline calcium phosphate (BpNcCaP) by developing our previous biomimetic protocol. We evaluated the cytotoxicity of BpNcCaP by assessing the viability of L929 mouse fibroblasts using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) assay. To characterize the physicochemical properties of the novel BpNcCaP granules, we first compared the morphology and composition of BpNcCaP with those of Bio-Oss® using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). We further compared the surface area, pore size distribution, hydrophilicity behavior, and hardness of BpNcCaP with those of Bio-Oss® granules using specific surface area, contact angle, and Vickers hardness as parameters, respectively. BpNcCaP showed no obvious cytotoxicity. In-vitro characterization data showed that BpNcCaP and Bio-Oss® granules were both comprised of nanocrystalline hydroxyapatite (HAp). The Ca/P ratios of BpNcCaP and Bio-Oss® calculated from the EDS results were 1.34 and 1.66, respectively. Hence, BpNcCaP and Bio-Oss® were Ca-deficient HAp. Compared with Bio-Oss®, synthetic BpNcCaP had better hydrophilicity, higher specific surface area, lower crystallinity, and hardness. These data suggested a good performance of BpNcCaP granules in clinical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-vitro physicochemical characterization of a novel type of bone-defect-filling granules—BpNcCaP in comparison to deproteinized bovine bone (Bio-Oss®)

Show Author's information Gaoli Xu1,2Ting Wang3Chenxi Shen1,4Jian Zhou5Ben Wan1,4Tymour Forouzanfar1,6Haiyan Lin7,8( )Gang Wu9( )
Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam 1081 HV, the Netherlands
Department of Stomatology, Zhejiang Hospital, Hangzhou 310007, China
Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
Hangzhou Huibo Science and Technology Co., Ltd, Xinjie Science Park, Hangzhou 311210, China
Department of Stomatology, Hangzhou Stomatology Hospital, Hangzhou 310006, China
Department of Oral and Maxillofacial Surgery, Leiden University Medical Center (LUMC), Leiden 2311 BZ, the Netherlands
Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou 310006, China
Savid School of Stomatology, Hangzhou Medical College, Hangzhou 310059, China
Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081 LA, the Netherlands

Abstract

As alternatives to autografts, allografts, and xenografts, calcium phosphate (CaP)-based bone-defect-filling materials (e.g., deproteinized bovine bone (DBB, Bio-Oss®)) are widely used to repair large-volume bone defects (LVBDs) in clinic. However, most of these materials show a very low degradability due to a sintering process in their production. In this study, we synthesized a novel type of granules—biomimetically precipitated nanocrystalline calcium phosphate (BpNcCaP) by developing our previous biomimetic protocol. We evaluated the cytotoxicity of BpNcCaP by assessing the viability of L929 mouse fibroblasts using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) assay. To characterize the physicochemical properties of the novel BpNcCaP granules, we first compared the morphology and composition of BpNcCaP with those of Bio-Oss® using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). We further compared the surface area, pore size distribution, hydrophilicity behavior, and hardness of BpNcCaP with those of Bio-Oss® granules using specific surface area, contact angle, and Vickers hardness as parameters, respectively. BpNcCaP showed no obvious cytotoxicity. In-vitro characterization data showed that BpNcCaP and Bio-Oss® granules were both comprised of nanocrystalline hydroxyapatite (HAp). The Ca/P ratios of BpNcCaP and Bio-Oss® calculated from the EDS results were 1.34 and 1.66, respectively. Hence, BpNcCaP and Bio-Oss® were Ca-deficient HAp. Compared with Bio-Oss®, synthetic BpNcCaP had better hydrophilicity, higher specific surface area, lower crystallinity, and hardness. These data suggested a good performance of BpNcCaP granules in clinical applications.

Keywords: hydroxyapatite, bone regeneration, osteogenesis, deproteinized bovine bone, calcium phosphate

References(65)

[1]
Pawar, V.; Ravi, S.; Srivastava, R. Natural biopolymeric nanomaterials for tissue engineering: Overview and recent advances. In Biopolymeric Nanomaterials. Kanwar, S.; Kumar, A.; Nguyen, T. A.; Sharma, S.; Slimani, Y., Eds.; Elsevier: Amsterdam, 2021; pp 675–696.
DOI
[2]

Zimmermann, G.; Moghaddam, A. Allograft bone matrix versus synthetic bone graft substitutes. Injury 2011, 42, S16–S21.

[3]

Rawashdeh, M. A.; Telfah, H. Secondary alveolar bone grafting: The dilemma of donor site selection and morbidity. Br. J. Oral Maxillofac. Surg. 2008, 46, 665–670.

[4]

Wang, W. H.; Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247.

[5]
Artzi, Z. Bone Augmentation by Anatomical Region: Techniques and Decision-Making; John Wiley & Sons: Hoboken, 2020; pp 61–67.
DOI
[6]

Da Silva Esteves, E.; Kassis, E. N.; Da Silva Carvalho, S. B. Major aproaches of the use of FRP and Bio-Oss® in bone regeneration and elevation for implantology: A concise systematic review. MedNEXT J. Med. Health Sci. 2021, 2.

[7]

Da Silva Gonzaga, K.; Silva, S. A.; Munhos, M. M.; Kassis, E. N. Major cellular and molecular processes and clinical outcomes in bone regeneration for successful dental implantation: A systematic review. MedNEXT J. Med. Health Sci. 2022, 3.

[8]

Nani, M. V. B.; Torres, G. L. M.; Morais, G.; Kassis, E. N. Clinical research on the bone graft and the use of plasma-rich fibrin: A concise systematic review. MedNEXT J. Med. Health Sci. 2022, 3.

[9]

Barbeck, M.; Unger, R.; Witte, F.; Wenisch, S.; Schnettler, R. Xenogeneic bone grafting materials. Int. Mag. Oral. Implants 2017, 3, 34–36.

[10]

Sartori, S.; Silvestri, M.; Forni, F.; Cornaglia, A. I.; Tesei, P.; Cattaneo, V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin. Oral Implants Res. 2003, 14, 369–372.

[11]

Massit, A.; Fathi, M.; El Yacoubi, A.; Kholtei, A.; El Idrissi B. C. Effect of physical and chemical parameters on the β-tricalcium phosphate synthesized by the wet chemical method. Mediterr. J. Chem. 2018, 7, 234–242.

[12]

López-Ortiz, S.; Mendoza-Anaya, D.; Sánchez-Campos, D.; Fernandez-García, M. E.; Salinas-Rodríguez, E.; Reyes-Valderrama, M. I.; Rodríguez-Lugo, V. The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. J. Nanomater. 2020, 2020, 5912592.

[13]

Nimishakavi, S.; Rao, V. M.; Aishwarya, T. N.; Singh, A. K. Green chemistry synthesis of nano-hydroxyapatite: Effect of natural stabilisers on Ca/P. Int. J. Sci. Res. Sci. 2021, 8, 382–389.

[14]

Champion, E. Sintering of calcium phosphate bioceramics. Acta Biomater. 2013, 9, 5855–5875.

[15]

Rodríguez-Lugo, V.; Karthik, T. V. K.; Mendoza-Anaya, D.; Rubio-Rosas, E.; Cerón, L. S. V.; Reyes-Valderrama, M. I.; Salinas-Rodríguez, E. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties. Royal Soc. Open Sci. 2018, 5, 180962.

[16]
Zhou, C. C.; Li, X. F.; Cheng, J. Q.; Fan, H. S.; Zhang, X. D. Bioactive ceramics and metals for regenerative engineering. In Regenerative Engineering: Advanced Materials Science Principles. Khan, Y.; Laurencin, C. T., Eds.; CRC Press: Boca Raton, 2017; pp 31–43.
DOI
[17]

Sikder, P.; Ren, Y. F.; Bhaduri, S. B. Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review. Acta Biomater. 2020, 111, 29–53.

[18]

Rodriguez, A.; Anastassov, G. E.; Lee, H.; Buchbinder, D.; Wettan, H. Maxillary sinus augmentation with deproteinated bovine bone and platelet rich plasma with simultaneous insertion of endosseous implants. J. Oral Maxillofac. Surg. 2003, 61, 157–163.

[19]

Misch, C. E.; Qu, Z. M.; Bidez, M. W. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg. 1999, 57, 700–706.

[20]

Wu, G.; Liu, Y. L.; Iizuka, T.; Hunziker, E. B. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: The surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein. Tissue Eng. Part C: Methods 2010, 16, 1255–1265.

[21]

Zheng, Y. N.; Wu, G.; Liu, T.; Liu, Y.; Wismeijer, D.; Liu, Y. L. A novel BMP2-coprecipitated, layer-by-layer assembled biomimetic calcium phosphate particle: A biodegradable and highly efficient osteoinducer. Clin. Implant Dent. Relat. Res. 2014, 16, 643–654.

[22]

Liu, T.; Zheng, Y. N.; Wu, G.; Wismeijer, D.; Pathak, J. L.; Liu, Y. L. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Sci. Rep. 2017, 7, 41800.

[23]

Jiang, S. J.; Liu, T.; Wu, G.; Li, W.; Feng, X. X.; Pathak, J. L.; Shi, J. J. BMP2-functionalized biomimetic calcium phosphate graft promotes alveolar defect healing during orthodontic tooth movement in beagle dogs. Front. Bioeng. Biotechnol. 2020, 8, 517.

[24]

Liu, T.; Zheng, Y. N.; Wu, G.; Wismeijer, D.; Pathak, J. L.; Liu, Y. L. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Sci. Rep. 2017, 7, 41800.

[25]

Lee, J. H.; Yi, G. S.; Lee, J. W.; Kim, D. J. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J. Periodontal Implant Sci. 2017, 47, 388–401.

[26]

Figueiredo, M.; Henriques, J.; Martins, G.; Guerra, F.; Judas, F.; Figueiredo, H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes-comparison with human bone. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2010, 92B, 409–419.

[27]
LeGeros, R. Calcium Phosphates in Enamel, Dentin and Bone, Calcium phosphates in oral biology and medicine. Karger Publishers1991, pp 108–129.
[28]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

[29]

Matsunaga, K. First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J. Chem. Phys. 2008, 128, 245101.

[30]

Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894.

[31]

Alqap, A. S. F.; Sopyan, I. Low temperature hydrothermal synthesis of calcium phosphate ceramics: Effect of excess Ca precursor on phase behavior. Indian J. Chem. Sect. A 2009, 48A, 1492–1500.

[32]

Senthilkumar, S.; Dhivya, V.; Sathya, M.; Rajendran, A. RETRACTED ARTICLE: Synthesis and characterization of magnetite/hydroxyapatite nanoparticles for biomedical applications. J. Exp. Nanosci. 2021, 16, 159–179.

[33]

De Paula Do Desterro, F.; Sader, M. S.; De Almeida Soares, G. D.; Vidigal, G. M. Jr. Can inorganic bovine bone grafts present distinct properties?. Braz. Dent. J. 2014, 25, 282–288.

[34]

Gomes, G. C.; Borghi, F. F.; Ospina, R. O.; López, E. O.; Borges, F. O.; Mello, A. Nd: YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature. Surf. Coat. Technol. 2017, 329, 174–183.

[35]

Rojas-Mayorga, C. K.; Mendoza-Castillo, D. I.; Bonilla-Petriciolet, A.; Silvestre-Albero, J. Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution. Adsorpt. Sci. Technol. 2016, 34, 368–387.

[36]

Wopenka, B.; Pasteris, J. D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. : C 2005, 25, 131–143.

[37]

Drouet, C. Apatite formation: Why it may not work as planned, and how to conclusively identify apatite compounds. BioMed Res. Int. 2013, 2013, 490946.

[38]

Olszta, M. J.; Cheng, X. G.; Jee, S. S.; Kumar, R.; Kim, Y. Y.; Kaufman, M. J.; Douglas, E. P.; Gower, L. B. Bone structure and formation: A new perspective. Mater. Sci. Eng. : R: Rep. 2007, 58, 77–116.

[39]

Mavropoulos, E.; Rossi, A. M.; Da Rocha, N. C. C.; Soares, G. A.; Moreira, J. C.; Moure, G. T. Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions. Mater. Charact. 2003, 50, 203–207.

[40]
Myers, H. M. Calcium phosphates in oral biology and medicine. In Calcium Phosphate Biomaterials in Preventive and Restorative Dentistry. Legeros, R. Z., Ed; Karger: Farmington, 1991; pp 154–171.
[41]

Song, Y.; Zhang, S. X.; Li, J. N.; Zhao, C. L.; Zhang, X. N. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomater. 2010, 6, 1736–1742.

[42]

Cai, Z. P.; Wu, Z. W.; Wan, Y.; Yu, T.; Zhou, C. R. Manipulation of the degradation behavior of calcium phosphate and calcium sulfate bone cement system by the addition of micro-nano calcium phosphate. Ceram. Int. 2021, 47, 29213–29224.

[43]

Lin, J. H. C.; Kuo, K. H.; Ding, S. J.; Ju, C. P. Surface reaction of stoichiometric and calcium-deficient hydroxyapatite in simulated body fluid. J. Mater. Sci. : Mater. Med. 2001, 12, 731–741.

[44]

Li, H.; Gong, M.; Yang, A. P.; Ma, J.; Li, X. D.; Yan, Y. G. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer. Int. J. Nanomed. 2012, 7, 1287–1295.

[45]

Suzuki, O.; Kamakura, S.; Katagiri, T.; Nakamura, M.; Zhao, B. H.; Honda, Y.; Kamijo, R. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 2006, 27, 2671–2681.

[46]
Elgin, T. Finite element analysis of bone remodelling around an uncemented resurfaced femoral head. Master Degree Thesis, Carleton University, Ottawa, 2010.
[47]

Kačarević, Z. P.; Kavehei, F.; Houshmand, A.; Franke, J.; Smeets, R.; Rimashevskiy, D.; Wenisch, S.; Schnettler, R.; Jung, O.; Barbeck, M. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration. Int. J. Artif. Organs 2018, 41, 789–800.

[48]

Tahmasebi, E.; Alam, M.; Yazdanian, M.; Tebyanian, H.; Yazdanian, A.; Seifalian, A.; Mosaddad, S. A. Current biocompatible materials in oral regeneration: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2020, 9, 11731–11755.

[49]

Ishtiaque, S.; Das, H.; Hoque, S. M.; Choudhury, S. Synthesis of n-HAP using different precursors and dependence of Vickers hardness on the structure by tuning sintering temperature. Int. J. Appl. Ceram. Technol. 2022, 19, 1281–1292.

[50]
Liu, T. Osteoinductive bone substitutes. Ph. D. Dissertation, Vrije Universiteit Amsterdam, Amsterdam, 2013.
[51]

Li, X. M.; Van Blitterswijk, C. A.; Feng, Q. L.; Cui, F. Z.; Watari, F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 2008, 29, 3306–3316.

[52]

Weibrich, G.; Trettin, R.; Gnoth, S. H.; Götz, H.; Duschner, H.; Wagner, W. Determining the size of the specific surface of bone substitutes with gas adsorption. Mund Kiefer Gesichtschir. 2000, 4, 148–152.

[53]

Leteve, M.; Passuti, N. Current concepts in bone graft substitutes. New J. Glass Ceram. 2018, 8, 39–54.

[54]

Kattimani, V. S.; Kondaka, S.; Lingamaneni, K. P. Hydroxyapatite— Past, present, and future in bone regeneration. Bone Tissue Regen. Insights 2016, 7, 36138.

[55]

Sánchez-Salcedo, S.; Arcos, D.; Vallet-Regí, M. Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng. Mater. 2008, 377, 19–42.

[56]

Sakamoto, M. Development and evaluation of superporous hydroxyapatite ceramics with triple pore structure as bone tissue scaffold. J. Ceram. Soc. Japan 2010, 118, 753–757.

[57]

Lambert, F.; Bacevic, M.; Layrolle, P.; Schüpbach, P.; Drion, P.; Rompen, E. Impact of biomaterial microtopography on bone regeneration: Comparison of three hydroxyapatites. Clin. Oral Implants Res. 2017, 28, e201–e207.

[58]

Boyan, B. D.; Lotz, E. M.; Schwartz, Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng. Part A 2017, 23, 1479–1489.

[59]

Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681.

[60]

Jeong, J.; Kim, J. H.; Shim, J. H.; Hwang, N. S.; Heo, C. Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 4.

[61]

Kubies, D.; Himmlová, L.; Riedel, T.; Chánová, E.; Balík, K.; Douděrová, M.; Bártová, J.; Pešáková, V. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol. Res. 2011, 60, 95–111.

[62]

Oates, T. W.; Valderrama, P.; Bischof, M.; Nedir, R.; Jones, A.; Simpson, J.; Toutenburg, H.; Cochran, D. L. Enhanced implant stability with a chemically modified SLA surface: A randomized pilot study. Int. J. Oral Maxillofac. Implants 2007, 22, 755–760.

[63]

Trajkovski, B.; Jaunich, M.; Müller, W. D.; Beuer, F.; Zafiropoulos, G. G.; Houshmand, A. Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes. Materials 2018, 11, 215.

[64]

Tu, Y. Z.; Xu, G. Z.; Jiang, L.; Hu, X. J.; Xu, J.; Xie, X. C.; Li, A. M. Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants. Chem. Eng. J. 2020, 382, 123015.

[65]

Wei, J.; Chen, F. P.; Shin, J. W.; Hong, H.; Dai, C. L.; Su, J. C.; Liu, C. S. Preparation and characterization of bioactive mesoporous wollastonite-polycaprolactone composite scaffold. Biomaterials 2009, 30, 1080–1088.

File
ntm-2-1-9130016_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 March 2023
Revised: 31 March 2023
Accepted: 03 April 2023
Published: 10 April 2023
Issue date: March 2023

Copyright

© The Author(s) 2023. Nano TransMed published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This study was supported by Key Research and Development Plan of Zhejiang Province (No. 2021C04013), High-End Foreign Expert Recruitment Plan of China (No. G20200216024), Zhejiang Medical and Health Science and Technology Project (No. 2021446434), China Scholarship Council (No. 201808330467).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return